Results 1 - 10
of
664
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
- In IEEE Workshop on Stereo and Multi-Baseline Vision,
, 2001
"... Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame ..."
Abstract
-
Cited by 1546 (22 self)
- Add to MetaCart
(Show Context)
Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today's best-performing stereo algorithms.
Lucas-Kanade 20 Years On: A Unifying Framework: Part 3
- International Journal of Computer Vision
, 2002
"... Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision. Applications range from optical flow, tracking, and layered motion, to mosaic construction, medical image registration, and face coding. Numerous algorithms hav ..."
Abstract
-
Cited by 706 (30 self)
- Add to MetaCart
Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision. Applications range from optical flow, tracking, and layered motion, to mosaic construction, medical image registration, and face coding. Numerous algorithms have been proposed and a variety of extensions have been made to the original formulation. We present an overview of image alignment, describing most of the algorithms in a consistent framework. We concentrate on the inverse compositional algorithm, an efficient algorithm that we recently proposed. We examine which of the extensions to the Lucas-Kanade algorithm can be used with the inverse compositional algorithm without any significant loss of efficiency, and which cannot. In this paper, Part 3 in a series of papers, we cover the extension of image alignment to allow linear appearance variation. We first consider linear appearance variation when the error function is the Euclidean L2 norm. We describe three different algorithms, the simultaneous, project out, and normalization inverse compositional algorithms, and empirically compare them. Afterwards we consider the combination of linear appearance variation with the robust error functions described in Part 2 of this series. We first derive robust versions of the simultaneous and normalization algorithms. Since both of these algorithms are very inefficient, as in Part 2 we derive efficient approximations based on spatial coherence. We end with an empirical evaluation of the robust algorithms.
Representing Moving Images with Layers
, 1994
"... We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each o ..."
Abstract
-
Cited by 542 (11 self)
- Add to MetaCart
We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each other in accord with the rules of compositing. Velocity maps define how the layers are to be warped over time. The layered representation is more flexible than standard image transforms and can capture many important properties of natural image sequences. We describe some methods for decomposing image sequences into layers using motion analysis, and we discuss how the representation may be used for image coding and other applications.
Active Appearance Models Revisited
- International Journal of Computer Vision
, 2003
"... Active Appearance Models (AAMs) and the closely related concepts of Morphable Models and Active Blobs are generative models of a certain visual phenomenon. Although linear in both shape and appearance, overall, AAMs are nonlinear parametric models in terms of the pixel intensities. Fitting an AAM to ..."
Abstract
-
Cited by 462 (39 self)
- Add to MetaCart
Active Appearance Models (AAMs) and the closely related concepts of Morphable Models and Active Blobs are generative models of a certain visual phenomenon. Although linear in both shape and appearance, overall, AAMs are nonlinear parametric models in terms of the pixel intensities. Fitting an AAM to an image consists of minimizing the error between the input image and the closest model instance; i.e. solving a nonlinear optimization problem. We propose an efficient fitting algorithm for AAMs based on the inverse compositional image alignment algorithm. We show how the appearance variation can be "projected out" using this algorithm and how the algorithm can be extended to include a "shape normalizing" warp, typically a 2D similarity transformation. We evaluate our algorithm to determine which of its novel aspects improve AAM fitting performance.
Tracking People with Twists and Exponential Maps
, 1998
"... This paper demonstrates a new visual motion estimation technique that is able to recover high degree-of-freedom articulated human body configurations in complex video sequences. We introduce the use of a novel mathematical technique, the product of exponential maps and twist motions, and its integra ..."
Abstract
-
Cited by 450 (5 self)
- Add to MetaCart
(Show Context)
This paper demonstrates a new visual motion estimation technique that is able to recover high degree-of-freedom articulated human body configurations in complex video sequences. We introduce the use of a novel mathematical technique, the product of exponential maps and twist motions, and its integration into a differential motion estimation. This results in solving simple linear systems, and enables us to recover robustly the kinematic degrees-offreedom in noise and complex self occluded configurations. We demonstrate this on several image sequences of people doing articulated full body movements, and visualize the results in re-animating an artificial 3D human model. We are also able to recover and re-animate the famous movements of Eadweard Muybridge's motion studies from the last century. To the best of our knowledge, this is the first computer vision based system that is able to process such challenging footage and recover complex motions with such high accuracy.
Limits on super-resolution and how to break them
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2002
"... AbstractÐNearly all super-resolution algorithms are based on the fundamental constraints that the super-resolution image should generate the low resolution input images when appropriately warped and down-sampled to model the image formation process. �These reconstruction constraints are normally com ..."
Abstract
-
Cited by 421 (7 self)
- Add to MetaCart
AbstractÐNearly all super-resolution algorithms are based on the fundamental constraints that the super-resolution image should generate the low resolution input images when appropriately warped and down-sampled to model the image formation process. �These reconstruction constraints are normally combined with some form of smoothness prior to regularize their solution.) In the first part of this paper, we derive a sequence of analytical results which show that the reconstruction constraints provide less and less useful information as the magnification factor increases. We also validate these results empirically and show that, for large enough magnification factors, any smoothness prior leads to overly smooth results with very little high-frequency content �however, many low resolution input images are used). In the second part of this paper, we propose a super-resolution algorithm that uses a different kind of constraint, in addition to the reconstruction constraints. The algorithm attempts to recognize local features in the low-resolution images and then enhances their resolution in an appropriate manner. We call such a super-resolution algorithm a hallucination or recogstruction algorithm. We tried our hallucination algorithm on two different data sets, frontal images of faces and printed Roman text. We obtained significantly better results than existing reconstruction-based algorithms, both qualitatively and in terms of RMS pixel error. Index TermsÐSuper-resolution, analysis of reconstruction constraints, learning, faces, text, hallucination, recogstruction. 1
A database and evaluation methodology for optical flow
- In Proceedings of the IEEE International Conference on Computer Vision
, 2007
"... The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex n ..."
Abstract
-
Cited by 407 (22 self)
- Add to MetaCart
(Show Context)
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at
Creating Full View Panoramic Image Mosaics and Environment Maps
, 1997
"... This paper presents a novel approach to creating full view panoramic mosaics from image sequences. Unlike current panoramic stitching methods, which usually require pure horizontal camera panning, our system does not require any controlled motions or constraints on how the images are taken (as long ..."
Abstract
-
Cited by 340 (29 self)
- Add to MetaCart
This paper presents a novel approach to creating full view panoramic mosaics from image sequences. Unlike current panoramic stitching methods, which usually require pure horizontal camera panning, our system does not require any controlled motions or constraints on how the images are taken (as long as there is no strong motion parallax). For example, images taken from a hand-held digital camera can be stitched seamlessly into panoramic mosaics. Because we represent our image mosaics using a set of transforms, there are no singularity problems such as those existing at the top and bottom of cylindrical or spherical maps. Our algorithm is fast and robust because it directly recovers 3D rotations instead of general 8 parameter planar perspective transforms. Methods to recover camera focal length are also presented. We also present an algorithm for efficiently extracting environment maps from our image mosaics. By mapping the mosaic onto an artibrary texture-mapped polyhedron surrounding t...
Robust multiresolution estimation of parametric motion models
- Jal of Vis. Comm. and Image Representation
, 1995
"... This paper describes a method to estimate parametric motion models. Motivations for the use of such models are on one hand their efficiency, which has been demonstrated in numerous contexts such as estimation, segmentation, tracking and interpretation of motion, and on the other hand, their low comp ..."
Abstract
-
Cited by 329 (55 self)
- Add to MetaCart
This paper describes a method to estimate parametric motion models. Motivations for the use of such models are on one hand their efficiency, which has been demonstrated in numerous contexts such as estimation, segmentation, tracking and interpretation of motion, and on the other hand, their low computational cost compared to optical flow estimation. However, it is important to have the best accuracy for the estimated parameters, and to take into account the problem of multiple motion. We have therefore developed two robust estimators in a multiresolution framework. Numerical results support this approach, as validated by the use of these algorithms on complex sequences. 1
Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 2002
"... This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and region-based segmentation modules under a curve-based optimization objective function. The task of supervised texture segmentation is considered to demonst ..."
Abstract
-
Cited by 312 (9 self)
- Add to MetaCart
This paper presents a novel variational framework to deal with frame partition problems in Computer Vision. This framework exploits boundary and region-based segmentation modules under a curve-based optimization objective function. The task of supervised texture segmentation is considered to demonstrate the potentials of the proposed framework. The textured feature space is generated by filtering the given textured images using isotropic and anisotropic filters, and analyzing their responses as multi-component conditional probability density functions. The texture segmentation is obtained by unifying region and boundary-based information as an improved Geodesic Active Contour Model. The defined objective function is minimized using a gradient-descent method where a level set approach is used to implement the obtained PDE. According to this PDE, the curve propagation towards the final solution is guided by boundary and region-based segmentation forces, and is constrained by a regularity force. The level set implementation is performed using a fast front propagation algorithm where topological changes are naturally handled. The performance of our method is demonstrated on a variety of synthetic and real textured frames.