Results 1  10
of
22
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
(Show Context)
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
A trust region method based on interior point techniques for nonlinear programming
 Mathematical Programming
, 1996
"... Jorge Nocedal z An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direc ..."
Abstract

Cited by 156 (19 self)
 Add to MetaCart
Jorge Nocedal z An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives. This framework permits primal and primaldual steps, but the paper focuses on the primal version of the new algorithm. An analysis of the convergence properties of this method is presented. Key words: constrained optimization, interior point method, largescale optimization, nonlinear programming, primal method, primaldual method, SQP iteration, barrier method, trust region method.
An interior point algorithm for large scale nonlinear programming
, 1997
"... The design and implementation of a new algorithm for solving large nonlinear programming problems is described. It follows a barrier approach that employs sequential quadratic programming and trust regions to solve the subproblems occurring in the iteration. Both primal and primaldual versions of t ..."
Abstract

Cited by 89 (18 self)
 Add to MetaCart
The design and implementation of a new algorithm for solving large nonlinear programming problems is described. It follows a barrier approach that employs sequential quadratic programming and trust regions to solve the subproblems occurring in the iteration. Both primal and primaldual versions of the algorithm are developed, and their performance is illustrated in a set of numerical tests.
On the implementation of an algorithm for largescale equality constrained optimization
 SIAM Journal on Optimization
, 1998
"... Abstract. This paper describes a software implementation of Byrd and Omojokun’s trust region algorithm for solving nonlinear equality constrained optimization problems. The code is designed for the efficient solution of large problems and provides the user with a variety of linear algebra techniques ..."
Abstract

Cited by 49 (12 self)
 Add to MetaCart
(Show Context)
Abstract. This paper describes a software implementation of Byrd and Omojokun’s trust region algorithm for solving nonlinear equality constrained optimization problems. The code is designed for the efficient solution of large problems and provides the user with a variety of linear algebra techniques for solving the subproblems occurring in the algorithm. Second derivative information can be used, but when it is not available, limited memory quasiNewton approximations are made. The performance of the code is studied using a set of difficult test problems from the CUTE collection.
InexactRestoration Algorithm for Constrained Optimization
 Journal of Optimization Theory and Applications
, 1999
"... We introduce a new model algorithm for solving nonlinear programming problems. No slack variables are introduced for dealing with inequality constraints. Each iteration of the method proceeds in two phases. In the first phase, feasibility of the current iterate is improved and in second phase the ob ..."
Abstract

Cited by 31 (7 self)
 Add to MetaCart
We introduce a new model algorithm for solving nonlinear programming problems. No slack variables are introduced for dealing with inequality constraints. Each iteration of the method proceeds in two phases. In the first phase, feasibility of the current iterate is improved and in second phase the objective function value is reduced in an approximate feasible set. The point that results from the second phase is compared with the current point using a nonsmooth merit function that combines feasibility and optimality. This merit function includes a penalty parameter that changes between different iterations. A suitable updating procedure for this penalty parameter is included by means of which it can be increased or decreased along different iterations. The conditions for feasibility improvement at the first phase and for optimality improvement at the second phase are mild, and largescale implementations of the resulting method are possible. We prove that under suitable conditions, that ...
InexactRestoration Method with Lagrangian Tangent Decrease and New Merit Function for Nonlinear Programming
, 1999
"... . A new InexactRestoration method for Nonlinear Programming is introduced. The iteration of the main algorithm has two phases. In Phase 1, feasibility is explicitly improved and in Phase 2 optimality is improved on a tangent approximation of the constraints. Trust regions are used for reducing the ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
. A new InexactRestoration method for Nonlinear Programming is introduced. The iteration of the main algorithm has two phases. In Phase 1, feasibility is explicitly improved and in Phase 2 optimality is improved on a tangent approximation of the constraints. Trust regions are used for reducing the step when the trial point is not good enough. The trust region is not centered in the current point, as in many Nonlinear Programming algorithms, but in the intermediate "more feasible" point. Therefore, in this semifeasible approach, the more feasible intermediate point is considered to be essentially better than the current point. This is the first method in which intermediatepointcentered trust regions are combined with the decrease of the Lagrangian in the tangent approximation to the constraints. The merit function used in this paper is also new: it consists of a convex combination of the Lagrangian and the (nonsquared) norm of the constraints. The Euclidean norm is used for simplicity but other norms for measuring infeasibility are admissible. Global convergence theorems are proved, a theoretically justified algorithm for the first phase is introduced and some numerical insight is given. Key Words: Nonlinear Programming, trust regions, GRG methods, SGRA methods, restoration methods, global convergence. 1
A PRIMALDUAL TRUST REGION ALGORITHM FOR NONLINEAR OPTIMIZATION
, 2003
"... This paper concerns general (nonconvex) nonlinear optimization when first and second derivatives of the objective and constraint functions are available. The proposed method is based on finding an approximate solution of a sequence of unconstrained subproblems parameterized by a scalar parameter. T ..."
Abstract

Cited by 21 (3 self)
 Add to MetaCart
This paper concerns general (nonconvex) nonlinear optimization when first and second derivatives of the objective and constraint functions are available. The proposed method is based on finding an approximate solution of a sequence of unconstrained subproblems parameterized by a scalar parameter. The objective function of each unconstrained subproblem is an augmented penaltybarrier function that involves both primal and dual variables. Each subproblem is solved using a secondderivative Newtontype method that employs a combined trust region and line search strategy to ensure global convergence. It is shown that the trustregion step can be computed by factorizing a sequence of systems with diagonallymodified primaldual structure, where the inertia of these systems can be determined without recourse to a special factorization method. This has the benefit that offtheshelf linear system software can be used at all times, allowing the straightforward extension to largescale problems. Numerical results are given for problems in the COPS test collection.
Feasible Interior Methods Using Slacks for Nonlinear Optimization
 Computational Optimization and Applications
, 2002
"... A slackbased feasible interior point method is described which can be derived as a modification of infeasible methods. The modification is minor for most line search methods, but trust region methods require special attention. It is shown how the Cauchy point, which is often computed in trust regio ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
(Show Context)
A slackbased feasible interior point method is described which can be derived as a modification of infeasible methods. The modification is minor for most line search methods, but trust region methods require special attention. It is shown how the Cauchy point, which is often computed in trust region methods, must be modified so that the feasible method is effective for problems containing both equality and inequality constraints. The relationship between slackbased methods and traditional feasible methods is discussed. Numerical results showing the relative performance of feasible versus infeasible interior point methods are presented.
Steering Exact Penalty Methods for Nonlinear Programming
, 2007
"... This paper reviews, extends and analyzes a new class of penalty methods for nonlinear optimization. These methods adjust the penalty parameter dynamically; by controlling the degree of linear feasibility achieved at every iteration, they promote balanced progress toward optimality and feasibility. I ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
(Show Context)
This paper reviews, extends and analyzes a new class of penalty methods for nonlinear optimization. These methods adjust the penalty parameter dynamically; by controlling the degree of linear feasibility achieved at every iteration, they promote balanced progress toward optimality and feasibility. In contrast with classical approaches, the choice of the penalty parameter ceases to be a heuristic and is determined, instead, by a subproblem with clearly defined objectives. The new penalty update strategy is presented in the context of sequential quadratic programming (SQP) and sequential linearquadratic programming (SLQP) methods that use trust regions to promote convergence. The paper concludes with a discussion of penalty parameters for merit functions used in line search methods.
Nonmonotone Trust Region Methods for Nonlinear Equality Constrained Optimization without a Penalty Function
 MATH. PROGRAM., SER. B
, 2000
"... We propose and analyze a class of penaltyfunctionfree nonmonotone trustregion methods for nonlinear equality constrained optimization problems. The algorithmic framework yields global convergence without using a merit function and allows nonmonotonicity independently for both, the constraint viol ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
We propose and analyze a class of penaltyfunctionfree nonmonotone trustregion methods for nonlinear equality constrained optimization problems. The algorithmic framework yields global convergence without using a merit function and allows nonmonotonicity independently for both, the constraint violation and the value of the Lagrangian function. Similar to the ByrdOmojokun class of algorithms, each step is composed of a quasinormal and a tangential step. Both steps are required to satisfy a decrease condition for their respective trustregion subproblems. The proposed mechanism for accepting steps combines nonmonotone decrease conditions on the constraint violation and/or the Lagrangian function, which leads to a flexibility and acceptance behavior comparable to filterbased methods. We establish the global convergence of the method. Furthermore, transition to quadratic local convergence is proved. Numerical tests are presented that confirm the robustness and efficiency of the approach.