Results 1 -
2 of
2
The evolution of compact binary star systems
- Living Reviews in Relativity
"... We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while c ..."
Abstract
-
Cited by 5 (0 self)
- Add to MetaCart
(Show Context)
We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars – compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources. 1 1
Relativistic Binaries in Globular Clusters”, Living Rev
- Relativity
, 2006
"... The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10 4 − 10 6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many inter ..."
Abstract
-
Cited by 4 (0 self)
- Add to MetaCart
(Show Context)
The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10 4 − 10 6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation. 1 1