Results 11 - 20
of
38
Realization of AdS Vacua in Attractor Mechanism on Generalized Geometry
, 2008
"... We evaluate flux vacua attractor equations in type IIA string theory compactified on generalized geometry with orientifold projection. This model provides N = 1 superpotential as a sum of the Ramond-Ramond superpotential and the one described by the (non)geometric flux charges. We demonstrate a sing ..."
Abstract
-
Cited by 2 (1 self)
- Add to MetaCart
We evaluate flux vacua attractor equations in type IIA string theory compactified on generalized geometry with orientifold projection. This model provides N = 1 superpotential as a sum of the Ramond-Ramond superpotential and the one described by the (non)geometric flux charges. We demonstrate a single modulus model in which supersymmetric AdS and Minkowski solutions are classified by means of the discriminants of the two superpotentials. We further study various configurations without the Ramond-Ramond flux charges. We also find supersymmetric AdS vacua both in the case of compactifications on the generalized geometry with SU(3) × SU(3) structure, and on the manifold with SU(3)-structure without the nongeometric flux charges. Especially, in the latter case, we should introduce a correction into the prepotential of the special geometry in order to realize consistent vacua. This deformation is interpreted as the back reaction of the geometric
stu Black Holes Unveiled
, 807
"... The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previo ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous results, as well as the fake supergravity (first order) formalism and an analysis of the BPS bound all along the non-BPS attractor flows and of the marginal stability of corresponding D-
Double-Horizon Limit, AdS Geometry and Entropy Function
, 2007
"... We start from a generic metric which describes four dimensional stationary black holes in an arbitrary theory of gravity and show that the AdS2 part of the near horizon geometry is a consequence of the double-horizon limit and finiteness. We also show that the field configurations of the near horizo ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
We start from a generic metric which describes four dimensional stationary black holes in an arbitrary theory of gravity and show that the AdS2 part of the near horizon geometry is a consequence of the double-horizon limit and finiteness. We also show that the field configurations of the near horizon are determined if the same conditions are applied to the equations of motion. This is done by showing that in the double-horizon limit field equations at the horizon decouple from the bulk of the space. Solving these equations gives the near horizon field configurations. It is shown that these decoupled equations can be obtained from an action derived from the original action by applying the double-horizon
“Constituents, Fundamental Forces and Symmetries of the Universe”,
, 805
"... Contribution to the Proceedings of the 3rd RTN Workshop ..."
arXiv:0804.3811 The Entropy Function for the extremal Kerr-(anti-)de Sitter Black Holes
, 804
"... Preprint typeset in JHEP style- HYPER VERSION ..."
(Show Context)
CERN-PH-TH/2008-002 UCLA/08/TEP/11 Erice Lectures on Black Holes and Attractors
"... These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formulæ for the critical points of the BH effective potential are give ..."
Abstract
- Add to MetaCart
These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formulæ for the critical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also