Results 1  10
of
56
Complexity classification of some edge modification problems
, 2001
"... In an edge modification problem one has to change the edge set of a given graph as little as possible so as to satisfy a certain property. We prove the NPhardness of a variety of edge modification problems with respect to some wellstudied classes of graphs. These include perfect, chordal, chain, c ..."
Abstract

Cited by 57 (2 self)
 Add to MetaCart
(Show Context)
In an edge modification problem one has to change the edge set of a given graph as little as possible so as to satisfy a certain property. We prove the NPhardness of a variety of edge modification problems with respect to some wellstudied classes of graphs. These include perfect, chordal, chain, comparability, split and asteroidal triple free. We show that some of these problems become polynomial when the input graph has bounded degree. We also give a general constant factor approximation algorithm for deletion and editing problems on bounded degree graphs with respect to properties that can be characterized by a finite set of forbidden induced subgraphs.
On the Compressibility of NP Instances and Cryptographic Applications
"... We study compression that preserves the solution to an instance of a problem rather than preserving the instance itself. Our focus is on the compressibility of N P decision problems. We consider N P problems that have long instances but relatively short witnesses. The question is, can one efficientl ..."
Abstract

Cited by 38 (0 self)
 Add to MetaCart
(Show Context)
We study compression that preserves the solution to an instance of a problem rather than preserving the instance itself. Our focus is on the compressibility of N P decision problems. We consider N P problems that have long instances but relatively short witnesses. The question is, can one efficiently compress an instance and store a shorter representation that maintains the information of whether the original input is in the language or not. We want the length of the compressed instance to be polynomial in the length of the witness and polylog in the length of original input. We discuss the differences between this notion and similar notions from parameterized complexity. Such compression enables to succinctly store instances until a future setting will allow solving them, either via a technological or algorithmic breakthrough or simply until enough time has elapsed. We give a new classification of N P with respect to compression. This classification forms a stratification of N P that we call the VC hierarchy. The hierarchy is based on a new type of reduction called Wreduction and there are compressioncomplete problems for each class. Our motivation for studying this issue stems from the vast cryptographic implications compressibility has. For example, we say that SAT is compressible if there exists a polynomial p(·, ·) so that given a
Minimal triangulations of graphs: A survey
 DISCRETE MATHEMATICS
"... Any given graph can be embedded in a chordal graph by adding edges, and the resulting chordal graph is called a triangulation of the input graph. In this paper we study minimal triangulations, which are the result of adding an inclusion minimal set of edges to produce a triangulation. This topic was ..."
Abstract

Cited by 35 (3 self)
 Add to MetaCart
(Show Context)
Any given graph can be embedded in a chordal graph by adding edges, and the resulting chordal graph is called a triangulation of the input graph. In this paper we study minimal triangulations, which are the result of adding an inclusion minimal set of edges to produce a triangulation. This topic was first studied from the standpoint of sparse matrices and vertex elimination in graphs. Today we know that minimal triangulations are closely related to minimal separators of the input graph. Since the first papers presenting minimal triangulation algorithms appeared in 1976, several characterizations of minimal triangulations have been proved, and a variety of algorithms exist for computing minimal triangulations of both general and restricted graph classes. This survey presents and ties together these results in a unified modern notation, keeping an emphasis on the algorithms.
Chordal deletion is fixedparameter tractable
 In 32nd International Workshop on GraphTheoretic Concepts in Computer Science, WG 2006, LNCS Proceedings
, 2004
"... Abstract. It is known to be NPhard to decide whether a graph can be made chordal by the deletion of k vertices. Here we present a uniformly polynomialtime algorithm for the problem: the running time is f(k) ·n α for some constant α not depending on k and some f depending only on k. For large value ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
(Show Context)
Abstract. It is known to be NPhard to decide whether a graph can be made chordal by the deletion of k vertices. Here we present a uniformly polynomialtime algorithm for the problem: the running time is f(k) ·n α for some constant α not depending on k and some f depending only on k. For large values of n, such an algorithm is much better than trying all the O(n k) possibilities. Therefore, the chordal deletion problem parameterized by the number k of vertices to be deleted is fixedparameter tractable. This answers an open question of Cai [2]. 1
Pathwidth, Bandwidth and Completion Problems to Proper Interval Graphs with Small Cliques
 SIAM Journal on Computing
, 1996
"... We study two related problems motivated by molecular biology: ffl Given a graph G and a constant k, does there exist a supergraph G of G which is a unit interval graph and has clique size at most k? ffl Given a graph G and a proper kcoloring c of G, does there exist a supergraph We show th ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
(Show Context)
We study two related problems motivated by molecular biology: ffl Given a graph G and a constant k, does there exist a supergraph G of G which is a unit interval graph and has clique size at most k? ffl Given a graph G and a proper kcoloring c of G, does there exist a supergraph We show that those problems are polynomial for fixed k. On the other hand we prove that the first problem is equivalent to deciding if the bandwidth of G is at most k \Gamma 1. Hence, it is NPhard, and W [t]hard for all t. We also show that the second problem is W [1]hard. This implies that for fixed k, both of the problems are unlikely to have an O(n ) algorithm, where ff is a constant independent of k.
A Polynomial Approximation Algorithm for the Minimum FillIn Problem
, 1998
"... In the minimum fillin problem, one wishes to find a set of edges of smallest size, whose addition to a given graph will make it chordal. The problem has important applications in numerical algebra and has been studied intensively since the 1970s. We give the first polynomial approximation algorithm ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
(Show Context)
In the minimum fillin problem, one wishes to find a set of edges of smallest size, whose addition to a given graph will make it chordal. The problem has important applications in numerical algebra and has been studied intensively since the 1970s. We give the first polynomial approximation algorithm for the problem. Our algorithm constructs a triangulation whose size is at most eight times the optimum size squared. The algorithm builds on the recent parameterized algorithm of Kaplan, Shamir and Tarjan for the same problem. For bounded degree graphs we give a polynomial approximation algorithm with a polylogarithmic approximation ratio. We also improve the parameterized algorithm.
Exact (exponential) algorithms for treewidth and minimum fillin
 In Proceedings of the 31st International Colloquium on Automata, Languages and Programming, ICALP 2004
, 2004
"... minimum fillin ..."
(Show Context)
GraphModeled Data Clustering: FixedParameter Algorithms for Clique Generation
 In Proc. 5th CIAC, volume 2653 of LNCS
, 2003
"... We present e#cient fixedparameter algorithms for the NPcomplete edge modification problems Cluster Editing and Cluster Deletion. ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
(Show Context)
We present e#cient fixedparameter algorithms for the NPcomplete edge modification problems Cluster Editing and Cluster Deletion.
The Hardness of Perfect Phylogeny, Feasible Register Assignment and Other Problems on Thin Colored Graphs
"... In this paper, we consider the complexity of a number of combinatorial problems; namely, Intervalizing Colored Graphs (DNA physical mapping), Triangulating Colored Graphs (perfect phylogeny), (Directed) (Modified) Colored Cutwidth, Feasible Register Assignment and Module Allocation for graphs of bou ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
In this paper, we consider the complexity of a number of combinatorial problems; namely, Intervalizing Colored Graphs (DNA physical mapping), Triangulating Colored Graphs (perfect phylogeny), (Directed) (Modified) Colored Cutwidth, Feasible Register Assignment and Module Allocation for graphs of bounded pathwidth. Each of these problems has as a characteristic a uniform upper bound on the tree or path width of the graphs in "yes"instances. For all of these problems with the exceptions of Feasible Register Assignment and Module Allocation, a vertex or edge coloring is given as part of the input. Our main results are that the parameterized variant of each of the considered problems is hard for the complexity classes W [t] for all t 2 N. We also show that Intervalizing Colored Graphs, Triangulating Colored Graphs, and Colored Cutwidth are NPComplete. 1 Introduction This paper focuses on a number of graph decision problems which share the characteristic that all have a uniform upper bo...