Results 1 - 10
of
1,120
Learning Stochastic Logic Programs
, 2000
"... Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic context-free grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a first-order r ..."
Abstract
-
Cited by 1194 (81 self)
- Add to MetaCart
(Show Context)
Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic context-free grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a first-order range-restricted definite clause. This paper summarises the syntax, distributional semantics and proof techniques for SLPs and then discusses how a standard Inductive Logic Programming (ILP) system, Progol, has been modied to support learning of SLPs. The resulting system 1) nds an SLP with uniform probability labels on each definition and near-maximal Bayes posterior probability and then 2) alters the probability labels to further increase the posterior probability. Stage 1) is implemented within CProgol4.5, which differs from previous versions of Progol by allowing user-defined evaluation functions written in Prolog. It is shown that maximising the Bayesian posterior function involves nding SLPs with short derivations of the examples. Search pruning with the Bayesian evaluation function is carried out in the same way as in previous versions of CProgol. The system is demonstrated with worked examples involving the learning of probability distributions over sequences as well as the learning of simple forms of uncertain knowledge.
Inverse entailment and Progol
, 1995
"... This paper firstly provides a re-appraisal of the development of techniques for inverting deduction, secondly introduces Mode-Directed Inverse Entailment (MDIE) as a generalisation and enhancement of previous approaches and thirdly describes an implementation of MDIE in the Progol system. Progol ..."
Abstract
-
Cited by 719 (61 self)
- Add to MetaCart
This paper firstly provides a re-appraisal of the development of techniques for inverting deduction, secondly introduces Mode-Directed Inverse Entailment (MDIE) as a generalisation and enhancement of previous approaches and thirdly describes an implementation of MDIE in the Progol system. Progol is implemented in C and available by anonymous ftp. The re-assessment of previous techniques in terms of inverse entailment leads to new results for learning from positive data and inverting implication between pairs of clauses.
Learning and development in neural networks: The importance of starting small
- Cognition
, 1993
"... It is a striking fact that in humans the greatest learnmg occurs precisely at that point in time- childhood- when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain (language ..."
Abstract
-
Cited by 531 (17 self)
- Add to MetaCart
It is a striking fact that in humans the greatest learnmg occurs precisely at that point in time- childhood- when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain (language), as investigated in con-nectionist networks. The networks are trained to process complex sentences involving relative clauses, number agreement, and several types of verb argument structure. Training fails in the case of networks which are fully formed and ‘adultlike ’ in their capacity. Training succeeds only when networks begin with limited working memory and gradually ‘mature ’ to the adult state. This result suggests that rather than being a limitation, developmental restrictions on resources may constitute a necessary prerequisite for mastering certain complex domains. Specifically, successful learning may depend on starting small.
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract
-
Cited by 529 (35 self)
- Add to MetaCart
In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given grammatical module. We decompose the learning problem and present formal results for a central subproblem, deducing the constraint ranking particular to a target language, given structural descriptions of positive examples. The structure imposed on the space of possible grammars by Optimality Theory allows efficient convergence to a correct grammar. We discuss implications for learning from overt data only, as well as other learning issues. We argue that Optimality Theory promotes confluence of the demands of more effective learnability and deeper linguistic explanation.
RoadRunner: Towards Automatic Data Extraction from Large Web Sites
, 2001
"... The paper investigates techniques for extracting data from HTML sites through the use of automatically generated wrappers. To automate the wrapper generation and the data extraction process, the paper develops a novel technique to compare HTML pages and generate a wrapper based on their similarities ..."
Abstract
-
Cited by 405 (9 self)
- Add to MetaCart
(Show Context)
The paper investigates techniques for extracting data from HTML sites through the use of automatically generated wrappers. To automate the wrapper generation and the data extraction process, the paper develops a novel technique to compare HTML pages and generate a wrapper based on their similarities and differences. Experimental results on real-life data-intensive Web sites confirm the feasibility of the approach.
Distributed representations, simple recurrent networks, and grammatical structure
- Machine Learning
, 1991
"... Abstract. In this paper three problems for a connectionist account of language are considered: 1. What is the nature of linguistic representations? 2. How can complex structural relationships such as constituent structure be represented? 3. How can the apparently open-ended nature of language be acc ..."
Abstract
-
Cited by 401 (17 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper three problems for a connectionist account of language are considered: 1. What is the nature of linguistic representations? 2. How can complex structural relationships such as constituent structure be represented? 3. How can the apparently open-ended nature of language be accommodated by a fixed-resource system? Using a prediction task, a simple recurrent network (SRN) is trained on multiclausal sentences which contain multiply-embedded relative clauses. Principal component analysis of the hidden unit activation patterns reveals that the network solves the task by developing complex distributed representations which encode the relevant grammatical relations and hierarchical constituent structure. Differences between the SRN state representations and the more traditional pushdown store are discussed in the final section.
Software unit test coverage and adequacy
- ACM Computing Surveys
, 1997
"... Objective measurement of test quality is one of the key issues in software testing. It has been a major research focus for the last two decades. Many test criteria have been proposed and studied for this purpose. Various kinds of rationales have been presented in support of one criterion or another. ..."
Abstract
-
Cited by 359 (8 self)
- Add to MetaCart
Objective measurement of test quality is one of the key issues in software testing. It has been a major research focus for the last two decades. Many test criteria have been proposed and studied for this purpose. Various kinds of rationales have been presented in support of one criterion or another. We survey the research work in
Functional Phonology -- Formalizing the interactions between articulatory and perceptual drives
, 1998
"... ..."
Discovering Models of Software Processes from Event-Based Data
- ACM Transactions on Software Engineering and Methodology
, 1998
"... this article we describe a Markov method that we developed specifically for process discovery, as well as describe two additional methods that we adopted from other domains and augmented for our purposes. The three methods range from the purely algorithmic to the purely statistical. We compare the m ..."
Abstract
-
Cited by 321 (8 self)
- Add to MetaCart
this article we describe a Markov method that we developed specifically for process discovery, as well as describe two additional methods that we adopted from other domains and augmented for our purposes. The three methods range from the purely algorithmic to the purely statistical. We compare the methods and discuss their application in an industrial case study.
Extracting structured data from web pages
- In ACM SIGMOD
, 2003
"... Many web sites contain a large collection of “structured” web pages. These pages encode data from an underlying structured source, and are typically generated dynamically. An example of such a collection is the set of book pages in Amazon. There are two important characteristics of such a collection ..."
Abstract
-
Cited by 310 (0 self)
- Add to MetaCart
(Show Context)
Many web sites contain a large collection of “structured” web pages. These pages encode data from an underlying structured source, and are typically generated dynamically. An example of such a collection is the set of book pages in Amazon. There are two important characteristics of such a collection: first, all the pages in the collection contain structured data conforming to a common schema; second, the pages are generated using a common template. Our goal is to automatically extract structured data from a collection of pages described above, without any human input like manually generated rules or training sets. Extracting structured data gives us greater querying power over the data and is useful in information integration systems. Most of the existing work on extracting structured data assumes significant human input, for example, in form of training examples of the data to be extracted. To the best of our knowledge, ROADRUNNER project is the only other work that tries to automatically extract structured data. However, ROADRUNNER makes several simplifying assumptions. These assumptions and their implications are discussed in our paper [2]. Structured data denotes data conforming to a schema or type. We borrow the definition of complex types from [1]. Any value conforming to a schema is an instance of the schema. For example, the schema ¡ £ ¥ § © ¥ � § ¥ � represents a tuple of � attributes. The first and third attributes are “atomic”; the second attribute is a set of atomic values. The value denotes an instance of schema. A template is a pattern that describes how instances of a schema are encoded. An example template for schema above � is where each letter denotes a string. Template � encodes the first attribute of between strings � and �, the second between �