Results 1  10
of
123
Interior methods for nonlinear optimization
 SIAM REVIEW
, 2002
"... Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for ..."
Abstract

Cited by 127 (6 self)
 Add to MetaCart
(Show Context)
Interior methods are an omnipresent, conspicuous feature of the constrained optimization landscape today, but it was not always so. Primarily in the form of barrier methods, interiorpoint techniques were popular during the 1960s for solving nonlinearly constrained problems. However, their use for linear programming was not even contemplated because of the total dominance of the simplex method. Vague but continuing anxiety about barrier methods eventually led to their abandonment in favor of newly emerging, apparently more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost without exception regarded as a closed chapter in the history of optimization. This picture changed dramatically with Karmarkar’s widely publicized announcement in 1984 of a fast polynomialtime interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have advanced so far, so fast, that their influence has transformed both the theory and practice of constrained optimization. This article provides a condensed, selective look at classical material and recent research about interior methods for nonlinearly constrained optimization.
Complete search in continuous global optimization and constraint satisfaction
 ACTA NUMERICA 13
, 2004
"... ..."
(Show Context)
On Augmented Lagrangian methods with general lowerlevel constraints
, 2005
"... Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. In ..."
Abstract

Cited by 84 (7 self)
 Add to MetaCart
Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. Inexact resolution of the lowerlevel constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty parameters are discussed. The reliability of the approach is tested by means of an exhaustive comparison against Lancelot. All the problems of the Cute collection are used in this comparison. Moreover, the resolution of location problems in which many constraints of the lowerlevel set are nonlinear is addressed, employing the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 10 6 variables and 14 × 10 6 constraints are solved in this way, using moderate computer time.
Optimization Problems with perturbations, A guided tour
 SIAM REVIEW
, 1996
"... This paper presents an overview of some recent and significant progress in the theory of optimization with perturbations. We put the emphasis on methods based on upper and lower estimates of the value of the perturbed problems. These methods allow to compute expansions of the value function and app ..."
Abstract

Cited by 73 (10 self)
 Add to MetaCart
(Show Context)
This paper presents an overview of some recent and significant progress in the theory of optimization with perturbations. We put the emphasis on methods based on upper and lower estimates of the value of the perturbed problems. These methods allow to compute expansions of the value function and approximate solutions in situations where the set of Lagrange multipliers may be unbounded, or even empty. We give rather complete results for nonlinear programming problems, and describe some partial extensions of the method to more general problems. We illustrate the results by computing the equilibrium position of a chain that is almost vertical or horizontal.
Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification
"... ..."
On Solving Mathematical Programs With Complementarity Constraints As Nonlinear Programs
, 2002
"... . We investigate the possibility of solving mathematical programs with complementarity constraints (MPCCs) using classical algorithms and procedures from nonlinear programming. Although MPCCs do not satisfy a constraint qualification, we establish sufficient conditions for their Lagrange multiplier ..."
Abstract

Cited by 41 (2 self)
 Add to MetaCart
. We investigate the possibility of solving mathematical programs with complementarity constraints (MPCCs) using classical algorithms and procedures from nonlinear programming. Although MPCCs do not satisfy a constraint qualification, we establish sufficient conditions for their Lagrange multiplier set to be nonempty in two different formulations. MPCCs that have nonempty Lagrange multiplier sets and that satisfy the quadratic growth condition can be approached by the elastic mode with a boundedpenalty parameter. This transformsthe MPCC into a nonlinear program with additional variables that has an isolated stationary point and local minimum at the solution of the original problem, which in turn makes it approachable by a sequential quadratic programming algorithm. The robustness of the elastic mode when applied to MPCCs is demonstrated by several numerical examples. 1. Introduction. Complementarity constraints can be used to model numerous economics or mechanics applications [18, 25]....
A ConstraintStabilized TimeStepping Approach for Rigid Multibody Dynamics with Joints
 Contact and Friction,” Int J Numer Method Eng, in press
, 2004
"... SUMMARY We present a method for achieving geometrical constraint stabilization for a linearcomplementaritybased timestepping scheme for rigid multibody dynamics with joints, contact, and friction. The method requires the solution of only one linear complementarity problem per step. We prove that ..."
Abstract

Cited by 40 (19 self)
 Add to MetaCart
(Show Context)
SUMMARY We present a method for achieving geometrical constraint stabilization for a linearcomplementaritybased timestepping scheme for rigid multibody dynamics with joints, contact, and friction. The method requires the solution of only one linear complementarity problem per step. We prove that the velocity stays bounded and that the constraint infeasibility is uniformly bounded in terms of the size of the time step and the current value of the velocity. Several examples, including one for jointonly systems, are used to demonstrate the constraint stabilization effect. Subject Index 65L80, 90C33, 70E55, 74M10, 74M15
Modifying SQP for degenerate problems
 Preprint ANL/MCSP6991097, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill
, 1997
"... Abstract. Most local convergence analyses of the sequential quadratic programming (SQP) algorithm for nonlinear programming make strong assumptions about the solution, namely, that the active constraint gradients are linearly independent and that there are no weakly active constraints. In this paper ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Most local convergence analyses of the sequential quadratic programming (SQP) algorithm for nonlinear programming make strong assumptions about the solution, namely, that the active constraint gradients are linearly independent and that there are no weakly active constraints. In this paper, we establish a framework for variants of SQP that retain the characteristic superlinear convergence rate even when these assumptions are relaxed, proving general convergence results and placing some recently proposed SQP variants in this framework. We discuss the reasons for which implementations of SQP often continue to exhibit good local convergence behavior even when the assumptions commonly made in the analysis are violated. Finally, we describe a new algorithm that formalizes and extends standard SQP implementation techniques, and we prove convergence results for this method also. AMS subject classifications. 90C33, 90C30, 49M45 1. Introduction. We
Stability in the presence of degeneracy and error estimation
 Math. Program
"... ..."
(Show Context)