• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

The art of uninformed decisions: A primer to property testing. The Bulletin of the European Association for Theoretical Computer (0)

by E Fischer
Venue:Science
Add To MetaCart

Tools

Sorted by:
Results 1 - 10 of 155
Next 10 →

A characterization of the (natural) graph properties testable with one-sided error

by Noga Alon, Asaf Shapira - Proc. of FOCS 2005 , 2005
"... The problem of characterizing all the testable graph properties is considered by many to be the most important open problem in the area of property-testing. Our main result in this paper is a solution of an important special case of this general problem; Call a property tester oblivious if its decis ..."
Abstract - Cited by 107 (18 self) - Add to MetaCart
The problem of characterizing all the testable graph properties is considered by many to be the most important open problem in the area of property-testing. Our main result in this paper is a solution of an important special case of this general problem; Call a property tester oblivious if its decisions are independent of the size of the input graph. We show that a graph property P has an oblivious one-sided error tester, if and only if P is (almost) hereditary. We stress that any ”natural ” property that can be tested (either with one-sided or with two-sided error) can be tested by an oblivious tester. In particular, all the testers studied thus far in the literature were oblivious. Our main result can thus be considered as a precise characterization of the ”natural” graph properties, which are testable with one-sided error. One of the main technical contributions of this paper is in showing that any hereditary graph property can be tested with one-sided error. This general result contains as a special case all the previous results about testing graph properties with one-sided error. These include the results of [20] and [5] about testing k-colorability, the characterization of [21] of the graph-partitioning problems that are testable with one-sided error, the induced vertex colorability properties of [3], the induced edge colorability properties of [14], a transformation from two-sided to one-sided error testing [21], as well as a recent result about testing monotone graph properties [10]. More importantly, as a special case of our main result, we infer that some of the most well studied graph properties, both in graph theory and computer science, are testable with one-sided error. Some of these properties are the well known graph properties of being Perfect, Chordal, Interval, Comparability, Permutation and more. None of these properties was previously known to be testable. 1
(Show Context)

Citation Context

...ns property testers with one-sided error. For additional results and references on graph property-testing as well as on testing properties of other combinatorial structures, the reader is referred to =-=[18]-=-, [22], [36] and [12]. 2 The New Results 2.1 The main technical result and its immediate applications A graph property is hereditary if it is closed under removal of vertices (and not necessarily unde...

A combinatorial characterization of the testable graph properties: it’s all about regularity

by Noga Alon, Eldar Fischer, Ilan Newman, Asaf Shapira - Proc. of STOC 2006 , 2006
"... A common thread in all the recent results concerning testing dense graphs is the use of Szemerédi’s regularity lemma. In this paper we show that in some sense this is not a coincidence. Our first result is that the property defined by having any given Szemerédi-partition is testable with a constant ..."
Abstract - Cited by 83 (15 self) - Add to MetaCart
A common thread in all the recent results concerning testing dense graphs is the use of Szemerédi’s regularity lemma. In this paper we show that in some sense this is not a coincidence. Our first result is that the property defined by having any given Szemerédi-partition is testable with a constant number of queries. Our second and main result is a purely combinatorial characterization of the graph properties that are testable with a constant number of queries. This characterization (roughly) says that a graph property P can be tested with a constant number of queries if and only if testing P can be reduced to testing the property of satisfying one of finitely many Szemerédi-partitions. This means that in some sense, testing for Szemerédi-partitions is as hard as testing any testable graph property. We thus resolve one of the main open problems in the area of property-testing, which was first raised in the 1996 paper of Goldreich, Goldwasser and Ron [24] that initiated the study of graph property-testing. This characterization also gives an intuitive explanation as to what makes a graph property testable.

Testing Subgraphs in Directed Graphs

by Noga Alon, Asaf Shapira - Proc. of the 35 th Annual Symp. on Theory of Computing (STOC , 2003
"... Let H be a fixed directed graph on h vertices, let G be a directed graph on n vertices and suppose that at least #n edges have to be deleted from it to make it H-free. We show that in this case G contains at least f(#, H)n copies of H. This is proved by establishing a directed version of Sz ..."
Abstract - Cited by 62 (15 self) - Add to MetaCart
Let H be a fixed directed graph on h vertices, let G be a directed graph on n vertices and suppose that at least #n edges have to be deleted from it to make it H-free. We show that in this case G contains at least f(#, H)n copies of H. This is proved by establishing a directed version of Szemeredi's regularity lemma, and implies that for every H there is a one-sided error property tester whose query complexity is bounded by a function of # only for testing the property PH of being H-free.

Monotonicity testing over general poset domains (Extended Abstract)

by Eldar Fischer , Sofya Raskhodnikova, Ronitt Rubinfeld, et al. , 2002
"... ..."
Abstract - Cited by 62 (24 self) - Add to MetaCart
Abstract not found

Some 3CNF properties are hard to test

by Eli Ben-sasson, Prahladh Harsha, Sofya Raskhodnikova - In Proc. 35th ACM Symp. on Theory of Computing , 2003
"... Abstract. For a Boolean formula ϕ on n variables, the associated property Pϕ is the collection of n-bit strings that satisfy ϕ. We study the query complexity of tests that distinguish (with high probability) between strings in Pϕ and strings that are far from Pϕ in Hamming distance. We prove that th ..."
Abstract - Cited by 59 (10 self) - Add to MetaCart
Abstract. For a Boolean formula ϕ on n variables, the associated property Pϕ is the collection of n-bit strings that satisfy ϕ. We study the query complexity of tests that distinguish (with high probability) between strings in Pϕ and strings that are far from Pϕ in Hamming distance. We prove that there are 3CNF formulae (with O(n) clauses) such that testing for the associated property requires Ω(n) queries, even with adaptive tests. This contrasts with 2CNF formulae, whose associated properties are always testable with O ( √ n) queries [E. Fischer et al., Monotonicity testing over general poset domains, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 474–483]. Notice that for every negative instance (i.e., an assignment that does not satisfy ϕ) there are three bit queries that witness this fact. Nevertheless, finding such a short witness requires reading a constant fraction of the input, even when the input is very far from satisfying the formula that is associated with the property. A property is linear if its elements form a linear space. We provide sufficient conditions for linear properties to be hard to test, and in the course of the proof include the following observations which are of independent interest: 1. In the context of testing for linear properties, adaptive two-sided error tests have no more power than nonadaptive one-sided error tests. Moreover, without loss of generality, any test for a linear property is a linear test. A linear test verifies that a portion of the input satisfies a set of linear constraints, which define the property, and rejects if and only if it finds a falsified constraint. A linear test is by definition nonadaptive and, when applied to linear properties, has a one-sided error. 2. Random low density parity check codes (which are known to have linear distance and constant rate) are not locally testable. In fact, testing such a code of length n requires Ω(n) queries.

Testing Juntas

by Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, Alex Samorodnitsky , 2002
"... We show that a Boolean function over n Boolean variables can be tested for the property of depending on only k of them, using a number of queries that depends only on k and the approximation parameter . We present two tests, both non-adaptive, that require a number of queries that is polynomial k an ..."
Abstract - Cited by 57 (12 self) - Add to MetaCart
We show that a Boolean function over n Boolean variables can be tested for the property of depending on only k of them, using a number of queries that depends only on k and the approximation parameter . We present two tests, both non-adaptive, that require a number of queries that is polynomial k and linear in . The first test is stronger in that it has a 1-sided error, while the second test has a more compact analysis. We also present an adaptive version and a 2-sided error version of the first test, that have a somewhat better query complexity than the other algorithms...

Every monotone graph property is testable

by Noga Alon, Asaf Shapira - Proc. of STOC 2005 , 2005
"... A graph property is called monotone if it is closed under removal of edges and vertices. Many monotone graph properties are some of the most well-studied properties in graph theory, and the abstract family of all monotone graph properties was also extensively studied. Our main result in this paper i ..."
Abstract - Cited by 52 (9 self) - Add to MetaCart
A graph property is called monotone if it is closed under removal of edges and vertices. Many monotone graph properties are some of the most well-studied properties in graph theory, and the abstract family of all monotone graph properties was also extensively studied. Our main result in this paper is that any monotone graph property can be tested with one-sided error, and with query complexity depending only on ɛ. This result unifies several previous results in the area of property testing, and also implies the testability of well-studied graph properties that were previously not known to be testable. At the heart of the proof is an application of a variant of Szemerédi’s Regularity Lemma. The main ideas behind this application may be useful in characterizing all testable graph properties, and in generally studying graph property testing. As a byproduct of our techniques we also obtain additional results in graph theory and property testing, which are of independent interest. One of these results is that the query complexity of testing testable graph properties with one-sided error may be arbitrarily large. Another result, which significantly extends previous results in extremal graph-theory, is that for any monotone graph property P, any graph that is ɛ-far from satisfying P, contains a subgraph of size depending on ɛ only, which does not satisfy P. Finally, we prove the following compactness statement: If a graph G is ɛ-far from satisfying a (possibly infinite) set of monotone graph properties P, then it is at least δP(ɛ)-far from satisfying one of the properties.
(Show Context)

Citation Context

...nd Ron [22], who showed that several natural graph properties are testable. In the wake of [22], many other graph properties were shown to be testable, while others were shown to be non-testable. See =-=[17]-=-, [21] and [33] for additional results and references on graph property-testing as well as on testing properties of other combinatorial structures. 1.2 Related Work The most interesting results in pro...

Algorithmic and Analysis Techniques in Property Testing

by Dana Ron
"... Property testing algorithms are “ultra”-efficient algorithms that decide whether a given object (e.g., a graph) has a certain property (e.g., bipartiteness), or is significantly different from any object that has the property. To this end property testing algorithms are given the ability to perform ..."
Abstract - Cited by 47 (8 self) - Add to MetaCart
Property testing algorithms are “ultra”-efficient algorithms that decide whether a given object (e.g., a graph) has a certain property (e.g., bipartiteness), or is significantly different from any object that has the property. To this end property testing algorithms are given the ability to perform (local) queries to the input, though the decision they need to make usually concern properties with a global nature. In the last two decades, property testing algorithms have been designed for many types of objects and properties, amongst them, graph properties, algebraic properties, geometric properties, and more. In this article we survey results in property testing, where our emphasis is on common analysis and algorithmic techniques. Among the techniques surveyed are the following: • The self-correcting approach, which was mainly applied in the study of property testing of algebraic properties; • The enforce and test approach, which was applied quite extensively in the analysis of algorithms for testing graph properties (in the dense-graphs model), as well as in other contexts;

Testing Basic Boolean Formulae

by Michal Parnas, Dana Ron, Alex Samorodnitsky - SIAM J. Disc. Math , 2002
"... We consider the problem of determining whether a given function f : f0; 1g belongs to a certain class of Boolean functions F or whether it is far from the class. More precisely, given query access to the function f and given a distance parameter , we would like to decide whether f 2 F or whethe ..."
Abstract - Cited by 46 (9 self) - Add to MetaCart
We consider the problem of determining whether a given function f : f0; 1g belongs to a certain class of Boolean functions F or whether it is far from the class. More precisely, given query access to the function f and given a distance parameter , we would like to decide whether f 2 F or whether it diers from every g 2 F on more than an -fraction of the domain elements. The classes of functions we consider are singleton (\dictatorship") functions, monomials, and monotone DNF functions with a bounded number of terms. In all cases we provide algorithms whose query complexity is independent of n (the number of function variables), and linear in 1=.

Graph limits and parameter testing

by Christian Borgs, Jennifer Chayes, László Lovász, Vera T. Sós, Balázs Szegedy, Katalin Vesztergombi , 2006
"... We define a distance of two graphs that reflects the closeness of both local and global properties. We also define convergence of a sequence of graphs, and show that a graph sequence is convergent if and only if it is Cauchy in this distance. Every convergent graph sequence has a limit in the form o ..."
Abstract - Cited by 43 (1 self) - Add to MetaCart
We define a distance of two graphs that reflects the closeness of both local and global properties. We also define convergence of a sequence of graphs, and show that a graph sequence is convergent if and only if it is Cauchy in this distance. Every convergent graph sequence has a limit in the form of a symmetric measurable function in two variables. We use these notions of distance and graph limits to give a general theory for parameter testing. As examples, we provide short proofs of the testability of MaxCut and the recent result of Alon and Shapira about the testability of hereditary graph properties.
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University