Results 1 
2 of
2
Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints
, 2013
"... We investigate two new optimization problems — minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of realworld appl ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
(Show Context)
We investigate two new optimization problems — minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of realworld applications in machine learning including sensor placement and data subset selection, which require maximizing a certain submodular function (like coverage or diversity) while simultaneously minimizing another (like cooperative cost). These problems are often posed as minimizing the difference between submodular functions [9, 25] which is in the worst case inapproximable. We show, however, that by phrasing these problems as constrained optimization, which is more natural for many applications, we achieve a number of bounded approximation guarantees. We also show that both these problems are closely related and an approximation algorithm solving one can be used to obtain an approximation guarantee for the other. We provide hardness results for both problems thus showing that our approximation factors are tight up to logfactors. Finally, we empirically demonstrate the performance and good scalability properties of our algorithms.
Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions
 IN NIPS
, 2013
"... We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAClike setting [28]), and constrained minimization of submodular functions. We show that the complexity of all three problems depe ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
(Show Context)
We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAClike setting [28]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the “curvature” of the submodular function, and provide lower and upper bounds that refine and improve previous results [2, 6, 8, 27]. Our proof techniques are fairly generic. We either use a blackbox transformation of the function (for approximation and learning), or a transformation of algorithms to use an appropriate surrogate function (for minimization). Curiously, curvature has been known to influence approximations for submodular maximization [3, 29], but its effect on minimization, approximation and learning has hitherto been open. We complete this picture, and also support our theoretical claims by empirical results.