Results 1  10
of
66
A calculus of mobile processes, I
, 1992
"... We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The ..."
Abstract

Cited by 1184 (31 self)
 Add to MetaCart
We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rrcalculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names, and computation is represented purely as the communication of names across links. After an illustrated description of how the ncalculus generalises conventional process algebras in treating mobility, several examples exploiting mobility are given in some detail. The important examples are the encoding into the ncalculus of higherorder functions (the Icalculus and combinatory algebra), the transmission of processes as values, and the representation of data structures as processes. The paper continues by presenting the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctionsi.e., assumptions of inequality among names. These theories are based upon a semantics in terms of a labeled transition system and a notion of strong bisimulation, both of which are expounded in detail in a companion paper. We also report briefly on workinprogress based upon the corresponding notion of weak bisimulation, in which internal actions cannot be observed.
Bigraphs and Mobile Processes (revised)
, 2004
"... A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and comm ..."
Abstract

Cited by 66 (7 self)
 Add to MetaCart
A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and communicate. In this memorandum we develop their static and dynamic theory. In Part I we illustrate...
Pure bigraphs: structure and dynamics
, 2005
"... Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a c ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a constituent of bigraphs, this paper is a devoted to pure bigraphs, which in turn underlie various more refined forms. Elsewhere it is shown that behavioural analysis for Petri nets, πcalculus and mobile ambients can all be recovered in the uniform framework of bigraphs. The paper first develops the dynamic theory of an abstract structure, a wide reactive system (Wrs), of which a Brs is an instance. In this context, labelled transitions are defined in such a way that the induced bisimilarity is a congruence. This work is then specialised to Brss, whose graphical structure allows many refinements of the theory. The latter part of the paper emphasizes bigraphical theory that is relevant to the treatment of dynamics via labelled transitions. As a running example, the theory is applied to finite pure CCS, whose resulting transition system and bisimilarity are analysed in detail. The paper also mentions briefly the use of bigraphs to model pervasive computing and
Tutorial introduction to graph transformation: A software engineering perspective
 In Proc. of the First International Conference on Graph Transformation (ICGT 2002
, 2002
"... ..."
(Show Context)
Distributed Graph Transformation Units
 International Journal on Software Engineering and Knowledge Engineering
, 2002
"... Transformation units are a structuring principle for graph transformation systems. In this paper we introduce distributed transformation units that can be used to model distributed graph transformation systems. A distributed transformation unit consists of a set of local transformation units which a ..."
Abstract

Cited by 31 (23 self)
 Add to MetaCart
Transformation units are a structuring principle for graph transformation systems. In this paper we introduce distributed transformation units that can be used to model distributed graph transformation systems. A distributed transformation unit consists of a set of local transformation units which are connected via interface units. Semantically, a distributed transformation unit transforms distributed graphs consisting of a set of local graphs connected via interface graphs, in such a way that every local graph with its interfaces is transformed by a local transformation unit. Since the interface graphs can be modified concurrently by various local transformation units we introduce a concurrent semantics of transformation units. The presented concepts are illustrated with a running example of a simple game where two different actors access a common game board randomly.
Transition systems, link graphs and Petri nets
, 2004
"... A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavi ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavioural preorders and equivalences, such as the failures preorder (treated elsewhere) and bisimilarity, which are guaranteed to be congruential. The theory rests upon the notion of relative pushout previously introduced by the authors. The framework
An Integrated Semantics for UML Class, Object and State Diagrams Based on Graph Transformation
 of Lecture Notes in Computer Science
, 2002
"... This paper studies the semantics of a central part of the Unified Modeling Language UML. It discusses UML class, object and state diagrams and presents a new integrated semantics for both on the basis of graph transformation. Graph transformation is a formal technique having some common ideas with t ..."
Abstract

Cited by 27 (7 self)
 Add to MetaCart
(Show Context)
This paper studies the semantics of a central part of the Unified Modeling Language UML. It discusses UML class, object and state diagrams and presents a new integrated semantics for both on the basis of graph transformation. Graph transformation is a formal technique having some common ideas with the UML. Graph transformation rules are associated with the operations in class diagrams and with the transitions in state diagrams. The resulting graph transformations are combined into a one system in order to obtain a single coherent semantic description.
Bigraphical Reactive Systems: Basic Theory
 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF MATHEMATICIANS
, 2001
"... A notion of bigraph is proposed as the basis for a model of mobile interaction. A bigraph consists of two independent structures: a topograph representing locality and a monograph representing connectivity. Bigraphs are equipped with reaction rules to form bigraphical reactive systems (BRSs), which ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
A notion of bigraph is proposed as the basis for a model of mobile interaction. A bigraph consists of two independent structures: a topograph representing locality and a monograph representing connectivity. Bigraphs are equipped with reaction rules to form bigraphical reactive systems (BRSs), which include versions of the calculus and the ambient calculus. Bigraphs are shown to be a special case of a more abstract notion, wide reactive systems (WRSs), not assuming any particular graphical or other structure but equipped with a notion of width, which expresses that agents, contexts and reactions may all be widely distributed entities. A behavioural theory is established for WRSs using the categorical notion of relative pushout; it allows labelled transition systems to be derived uniformly, in such a way that familiar behavioural preorders and equivalences, in particular bisimilarity, are congruential under certain conditions. Then the theory of bigraphs is developed, and they are shown to meet these conditions. It is shown that, using certain functors, other WRSs which meet the conditions may also be derived; these may, for example, be forms of BRS with additional structure. Simple examples of bigraphical systems are discussed; the theory is developed in a number of ways in preparation for deeper application studies.
A Graphical Specification of Model Transformations with Triple Graph Grammars
 In First European Conference Model Driven Architecture  Foundations and Applications, number 3748 in Lecture Notes in Computer Science
, 2005
"... Abstract. Models and model transformations are the core concepts of OMG’s MDA T M approach. Within this approach, most models are derived from the MOF and have a graphbased nature. In contrast, most of the current model transformations are specified textually. To enable a graphical specification of ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Models and model transformations are the core concepts of OMG’s MDA T M approach. Within this approach, most models are derived from the MOF and have a graphbased nature. In contrast, most of the current model transformations are specified textually. To enable a graphical specification of model transformation rules, this paper proposes to use triple graph grammars as declarative specification formalism. These triple graph grammars can be specified within the FUJABA tool and we argue that these rules can be more easily specified and they become more understandable and maintainable. To show the practicability of our approach, we present how to generate Tefkat rules from triple graph grammar rules, which helps to integrate triple graph grammars with a state of a art model transformation tool and shows the expressiveness of the concept. 1
Formalizing the Structural Semantics of DomainSpecific Modeling Languages
, 2009
"... Modelbased approaches to system design are now widespread and successful. These approaches make extensive use of model structure to describe systems using domainspecific abstractions, to specify and implement model transformations, and to analyze structural properties of models. In spite of its ge ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
Modelbased approaches to system design are now widespread and successful. These approaches make extensive use of model structure to describe systems using domainspecific abstractions, to specify and implement model transformations, and to analyze structural properties of models. In spite of its general importance the structural semantics of modeling languages are not wellunderstood. In this paper we develop the formal foundations for the structural semantics of domain specific modeling languages (DSML), including the mechanisms by which metamodels specify the structural semantics of DSMLs. Additionally, we show how our formalization can complement existing tools, and how it yields algorithms for the analysis of DSMLs and model transformations.