Results 1  10
of
76
Towards a quantum programming language
 Mathematical Structures in Computer Science
, 2004
"... The field of quantum computation suffers from a lack of syntax. In the absence of a convenient programming language, algorithms are frequently expressed in terms of hardware circuits or Turing machines. Neither approach particularly encourages structured programming or abstractions such as data type ..."
Abstract

Cited by 166 (15 self)
 Add to MetaCart
(Show Context)
The field of quantum computation suffers from a lack of syntax. In the absence of a convenient programming language, algorithms are frequently expressed in terms of hardware circuits or Turing machines. Neither approach particularly encourages structured programming or abstractions such as data types. In this paper, we describe the syntax and semantics of a simple quantum programming language. This language provides highlevel features such as loops, recursive procedures, and structured data types. It is statically typed, and it has an interesting denotational semantics in terms of complete partial orders of superoperators. 1
Deriving Bisimulation Congruences for Reactive Systems
 In Proc. of CONCUR 2000, 2000. LNCS 1877
, 2000
"... . The dynamics of reactive systems, e.g. CCS, has often been de ned using a labelled transition system (LTS). More recently it has become natural in de ning dynamics to use reaction rules  i.e. unlabelled transition rules  together with a structural congruence. But LTSs lead more naturally to beha ..."
Abstract

Cited by 136 (13 self)
 Add to MetaCart
(Show Context)
. The dynamics of reactive systems, e.g. CCS, has often been de ned using a labelled transition system (LTS). More recently it has become natural in de ning dynamics to use reaction rules  i.e. unlabelled transition rules  together with a structural congruence. But LTSs lead more naturally to behavioural equivalences. So one would like to derive from reaction rules a suitable LTS. This paper shows how to derive an LTS for a wide range of reactive systems. A label for an agent a is de ned to be any context F which intuitively is just large enough so that the agent Fa (\a in context F ") is able to perform a reaction. The key contribution of this paper is a precise de nition of \just large enough", in terms of the categorical notion of relative pushout (RPO), which ensures that bisimilarity is a congruence when sucient RPOs exist. Two examples  a simpli ed form of action calculi and termrewriting  are given, for which it is shown that su cient RPOs indeed exist. The thrust of thi...
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 42 (6 self)
 Add to MetaCart
(Show Context)
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...
Operational congruences for reactive systems
, 2001
"... This document consists of a slightly revised and corrected version of a dissertation ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
(Show Context)
This document consists of a slightly revised and corrected version of a dissertation
Transition systems, link graphs and Petri nets
, 2004
"... A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavi ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavioural preorders and equivalences, such as the failures preorder (treated elsewhere) and bisimilarity, which are guaranteed to be congruential. The theory rests upon the notion of relative pushout previously introduced by the authors. The framework
From Action Calculi to Linear Logic
, 1998
"... . Milner introduced action calculi as a framework for investigating models of interactive behaviour. We present a typetheoretic account of action calculi using the propositionsastypes paradigm; the type theory has a sound and complete interpretation in Power's categorical models. We go on to ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
. Milner introduced action calculi as a framework for investigating models of interactive behaviour. We present a typetheoretic account of action calculi using the propositionsastypes paradigm; the type theory has a sound and complete interpretation in Power's categorical models. We go on to give a sound translation of our type theory in the (type theory of) intuitionistic linear logic, corresponding to the relation between Benton's models of linear logic and models of action calculi. The conservativity of the syntactic translation is proved by a modelembedding construction using the Yoneda lemma. Finally, we briefly discuss how these techniques can also be used to give conservative translations between various extensions of action calculi. 1 Introduction Action calculi arose directly from the ßcalculus [MPW92]. They were introduced by Milner [Mil96], to provide a uniform notation for capturing many calculi of interaction such as the ßcalculus, the calculus, models of distribut...
Finite dimensional vector spaces are complete for traced symmetric monoidal categories
 IN: PILLARS OF COMPUTER SCIENCE: ESSAYS DEDICATED TO BORIS (BOAZ) TRAKHTENBROT ON THE OCCASION OF HIS 85TH BIRTHDAY, LECTURE NOTES IN COMPUTER SCIENCE 4800 (2008
, 2008
"... We show that the category FinVectk of finite dimensional vector spaces and linear maps over any field k is (collectively) complete for the traced symmetric monoidal category freely generated from a signature, provided that the field has characteristic 0; this means that for any two different arrows ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
(Show Context)
We show that the category FinVectk of finite dimensional vector spaces and linear maps over any field k is (collectively) complete for the traced symmetric monoidal category freely generated from a signature, provided that the field has characteristic 0; this means that for any two different arrows in the free traced category there always exists a strong traced functor into FinVectk which distinguishes them. Therefore two arrows in the free traced category are the same if and only if they agree for all interpretations in FinVectk.
The Uniformity Principle on Traced Monoidal Categories
 In Proceedings of CTCS’02, volume 69 of ENTCS
, 2003
"... The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
(Show Context)
The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Some classical examples like the Scott induction principle are shown to be instances of these constructions. We also characterize some specific cases of our constructions as suitable enriched limits. 1
Categorical Structure of Asynchrony
 Proceedings of MFPS 15”, Electronic Notes in Theoretical Computer Science
, 1999
"... We investigate a categorical framework for the semantics of asynchronous communication in networks of parallel processes. Abstracting from a category of asynchronous labeled transition systems, we formulate the notion of a categorical model of asynchrony as a uniformly traced monoidal category wit ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
(Show Context)
We investigate a categorical framework for the semantics of asynchronous communication in networks of parallel processes. Abstracting from a category of asynchronous labeled transition systems, we formulate the notion of a categorical model of asynchrony as a uniformly traced monoidal category with diagonals, such that every morphism is total and the focus is equivalent to a category of complete partial orders. We present a simple, nondeterministic, cpobased model that satisfies these requirements, and we discuss how to refine this model by an observational congruence. We also present a general construction of passing from deterministic to nondeterministic models, and more generally, from nonlinear to linear structure on a category.