Results 1  10
of
187
Short group signatures
 In proceedings of CRYPTO ’04, LNCS series
, 2004
"... Abstract. We construct a short group signature scheme. Signatures in our scheme are approximately the size of a standard RSA signature with the same security. Security of our group signature is based on the Strong DiffieHellman assumption and a new assumption in bilinear groups called the Decision ..."
Abstract

Cited by 382 (21 self)
 Add to MetaCart
(Show Context)
Abstract. We construct a short group signature scheme. Signatures in our scheme are approximately the size of a standard RSA signature with the same security. Security of our group signature is based on the Strong DiffieHellman assumption and a new assumption in bilinear groups called the Decision Linear assumption. We prove security of our system, in the random oracle model, using a variant of the security definition for group signatures recently given by Bellare, Micciancio, and Warinschi. 1
A practical and provably secure coalitionresistant group signature scheme
, 2000
"... A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes ..."
Abstract

Cited by 282 (28 self)
 Add to MetaCart
A group signature scheme allows a group member to sign messages anonymously on behalf of the group. However, in the case of a dispute, the identity of a signature’s originator can be revealed (only) by a designated entity. The interactive counterparts of group signatures are identity escrow schemes or group identification scheme with revocable anonymity. This work introduces a new provably secure group signature and a companion identity escrow scheme that are significantly more efficient than the state of the art. In its interactive, identity escrow form, our scheme is proven secure and coalitionresistant under the strong RSA and the decisional DiffieHellman assumptions. The security of the noninteractive variant, i.e., the group signature scheme, relies additionally on the FiatShamir heuristic (also known as the random oracle model).
Dynamic accumulators and application to efficient revocation of anonymous credentials
 http://eprint.iacr.org/2001, 2001. Jan Camenisch and Anna Lysyanskaya
"... Abstract. We introduce the notion of a dynamic accumulator. Anaccumulator scheme allows one to hash a large set of inputs into one short value, such that there is a short proof that a given input was incorporated into this value. A dynamic accumulator allows one to dynamically add and delete a value ..."
Abstract

Cited by 212 (11 self)
 Add to MetaCart
Abstract. We introduce the notion of a dynamic accumulator. Anaccumulator scheme allows one to hash a large set of inputs into one short value, such that there is a short proof that a given input was incorporated into this value. A dynamic accumulator allows one to dynamically add and delete a value, such that the cost of an add or delete is independent of the number of accumulated values. We provide a construction of a dynamic accumulator and an efficient zeroknowledge proof of knowledge of an accumulated value. We prove their security under the strong RSA assumption. We then show that our construction of dynamic accumulators enables efficient revocation of anonymous credentials, and membership revocation for recent group signature and identity escrow schemes.
A signature scheme with efficient protocols
 In Proceedings of SCN’02, volume 2576 of LNCS
, 2003
"... Abstract. Digital signature schemes are a fundamental cryptographic primitive, of use both in its own right, and as a building block in cryptographic protocol design. In this paper, we propose a practical and provably secure signature scheme and show protocols (1) for issuing a signature on a commit ..."
Abstract

Cited by 207 (20 self)
 Add to MetaCart
(Show Context)
Abstract. Digital signature schemes are a fundamental cryptographic primitive, of use both in its own right, and as a building block in cryptographic protocol design. In this paper, we propose a practical and provably secure signature scheme and show protocols (1) for issuing a signature on a committed value (so the signer has no information about the signed value), and (2) for proving knowledge of a signature on a committed value. This signature scheme and corresponding protocols are a building block for the design of anonymityenhancing cryptographic systems, such as electronic cash, group signatures, and anonymous credential systems. The security of our signature scheme and protocols relies on the Strong RSA assumption. These results are a generalization of the anonymous credential system of Camenisch and Lysyanskaya. 1
Signature Schemes Based on the Strong RSA Assumption
 ACM TRANSACTIONS ON INFORMATION AND SYSTEM SECURITY
, 1998
"... We describe and analyze a new digital signature scheme. The new scheme is quite efficient, does not require the the signer to maintain any state, and can be proven secure against adaptive chosen message attack under a reasonable intractability assumption, the socalled Strong RSA Assumption. Moreove ..."
Abstract

Cited by 178 (8 self)
 Add to MetaCart
We describe and analyze a new digital signature scheme. The new scheme is quite efficient, does not require the the signer to maintain any state, and can be proven secure against adaptive chosen message attack under a reasonable intractability assumption, the socalled Strong RSA Assumption. Moreover, a hash function can be incorporated into the scheme in such a way that it is also secure in the random oracle model under the standard RSA Assumption.
Practical Verifiable Encryption and Decryption of Discrete Logarithms
, 2003
"... Abstract. This paper addresses the problem of designing practical protocols for proving properties about encrypted data. To this end, it presents a variant of the new public key encryption of Cramer and Shoup based on Paillier’s decision composite residuosity assumption, along with efficient protoco ..."
Abstract

Cited by 170 (23 self)
 Add to MetaCart
(Show Context)
Abstract. This paper addresses the problem of designing practical protocols for proving properties about encrypted data. To this end, it presents a variant of the new public key encryption of Cramer and Shoup based on Paillier’s decision composite residuosity assumption, along with efficient protocols for verifiable encryption and decryption of discrete logarithms (and more generally, of representations with respect to multiple bases). This is the first verifiable encryption system that provides chosen ciphertext security and avoids inefficient cutandchoose proofs. The presented protocols have numerous applications, including key escrow, optimistic fair exchange, publicly verifiable secret and signature sharing, universally composable commitments, group signatures, and confirmer signatures. 1
Secure hashandsign signatures without the random oracle
, 1999
"... We present a new signature scheme which is existentially unforgeable under chosen message attacks, assuming some variant of the RSA conjecture. This scheme is not based on "signature trees", and instead it uses the so called "hashandsign" paradigm. It is unique in that the assu ..."
Abstract

Cited by 147 (10 self)
 Add to MetaCart
We present a new signature scheme which is existentially unforgeable under chosen message attacks, assuming some variant of the RSA conjecture. This scheme is not based on "signature trees", and instead it uses the so called "hashandsign" paradigm. It is unique in that the assumptions made on the cryptographic hash function in use are well defined and reasonable (although nonstandard). In particular, we do not model this function as a random oracle. We construct our proof of security in steps. First we describe and prove a construction which operates in the random oracle model. Then we show that the random oracle in this construction can be replaced by a hash function which satisfies some strong (but well defined!) computational assumptions. Finally,we demonstrate that these assumptions are reasonable, by proving that a function satisfying them exists under standard intractability assumptions.
Onthefly verification of rateless erasure codes for efficient content distribution
 In Proceedings of the IEEE Symposium on Security and Privacy
, 2004
"... Abstract — The quality of peertopeer content distribution can suffer when malicious participants intentionally corrupt content. Some systems using simple blockbyblock downloading can verify blocks with traditional cryptographic signatures and hashes, but these techniques do not apply well to mor ..."
Abstract

Cited by 138 (4 self)
 Add to MetaCart
Abstract — The quality of peertopeer content distribution can suffer when malicious participants intentionally corrupt content. Some systems using simple blockbyblock downloading can verify blocks with traditional cryptographic signatures and hashes, but these techniques do not apply well to more elegant systems that use rateless erasure codes for efficient multicast transfers. This paper presents a practical scheme, based on homomorphic hashing, that enables a downloader to perform onthefly verification of erasureencoded blocks. I.
Compact ecash
 In EUROCRYPT, volume 3494 of LNCS
, 2005
"... Abstract. This paper presents efficient offline anonymous ecash schemes where a user can withdraw a wallet containing 2 ℓ coins each of which she can spend unlinkably. Our first result is a scheme, secure under the strong RSA and the yDDHI assumptions, where the complexity of the withdrawal and s ..."
Abstract

Cited by 123 (18 self)
 Add to MetaCart
(Show Context)
Abstract. This paper presents efficient offline anonymous ecash schemes where a user can withdraw a wallet containing 2 ℓ coins each of which she can spend unlinkably. Our first result is a scheme, secure under the strong RSA and the yDDHI assumptions, where the complexity of the withdrawal and spend operations is O(ℓ + k) andtheuser’s wallet can be stored using O(ℓ + k) bits,wherek is a security parameter. The best previously known schemes require at least one of these complexities to be O(2 ℓ · k). In fact, compared to previous ecash schemes, our whole wallet of 2 ℓ coins has about the same size as one coin in these schemes. Our scheme also offers exculpability of users, that is, the bank can prove to third parties that a user has doublespent. We then extend our scheme to our second result, the first ecash scheme that provides traceable coins without a trusted third party. That is, once a user has double spent one of the 2 ℓ coins in her wallet, all her spendings of these coins can be traced. However, the price for this is that the complexity of the spending and of the withdrawal protocols becomes O(ℓ · k) and O(ℓ · k + k 2) bits, respectively, and wallets take O(ℓ · k) bitsofstorage. All our schemes are secure in the random oracle model.
Group signatures with verifierlocal revocation
 Proceedings of CCS 2004
, 2004
"... Abstract Group signatures have recently become important for enabling privacypreserving attestationin projects such as Microsoft's ..."
Abstract

Cited by 122 (3 self)
 Add to MetaCart
(Show Context)
Abstract Group signatures have recently become important for enabling privacypreserving attestationin projects such as Microsoft's