Results 1 - 10
of
53
A Survey of Paraphrasing and Textual Entailment Methods
, 2010
"... Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads ( ..."
Abstract
-
Cited by 56 (3 self)
- Add to MetaCart
(Show Context)
Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.
Learning Sentential Paraphrases from Bilingual Parallel Corpora for Text-to-Text Generation
"... Previous work has shown that high quality phrasal paraphrases can be extracted from bilingual parallel corpora. However, it is not clear whether bitexts are an appropriate resource for extracting more sophisticated sentential paraphrases, which are more obviously learnable from monolingual parallel ..."
Abstract
-
Cited by 24 (8 self)
- Add to MetaCart
(Show Context)
Previous work has shown that high quality phrasal paraphrases can be extracted from bilingual parallel corpora. However, it is not clear whether bitexts are an appropriate resource for extracting more sophisticated sentential paraphrases, which are more obviously learnable from monolingual parallel corpora. We extend bilingual paraphrase extraction to syntactic paraphrases and demonstrate its ability to learn a variety of general paraphrastic transformations, including passivization, dative shift, and topicalization. We discuss how our model can be adapted to many text generation tasks by augmenting its feature set, development data, and parameter estimation routine. We illustrate this adaptation by using our paraphrase model for the task of sentence compression and achieve results competitive with state-of-the-art compression systems.
Learning to Simplify Sentences Using Wikipedia
"... In this paper we examine the sentence simplification problem as an English-to-English translation problem, utilizing a corpus of 137K aligned sentence pairs extracted by aligning English Wikipedia and Simple English Wikipedia. This data set contains the full range of transformation operations includ ..."
Abstract
-
Cited by 24 (0 self)
- Add to MetaCart
(Show Context)
In this paper we examine the sentence simplification problem as an English-to-English translation problem, utilizing a corpus of 137K aligned sentence pairs extracted by aligning English Wikipedia and Simple English Wikipedia. This data set contains the full range of transformation operations including rewording, reordering, insertion and deletion. We introduce a new translation model for text simplification that extends a phrasebased machine translation approach to include phrasal deletion. Evaluated based on three metrics that compare against a human reference (BLEU, word-F1 and SSA) our new approach performs significantly better than two text compression techniques (including T3) and the phrase-based translation system without deletion. 1
Evaluating sentence compression: Pitfalls and suggested remedies
"... This work surveys existing evaluation methodologies for the task of sentence compression, identifies their shortcomings, and proposes alternatives. In particular, we examine the problems of evaluating paraphrastic compression and comparing the output of different models. We demonstrate that compress ..."
Abstract
-
Cited by 16 (4 self)
- Add to MetaCart
This work surveys existing evaluation methodologies for the task of sentence compression, identifies their shortcomings, and proposes alternatives. In particular, we examine the problems of evaluating paraphrastic compression and comparing the output of different models. We demonstrate that compression rate is a strong predictor of compression quality and that perceived improvement over other models is often a side effect of producing longer output. 1
Multiple aspect summarization using integer linear programming
- In Proceedings of EMNLP-CoNLL
, 2012
"... Multi-document summarization involves many aspects of content selection and sur-face realization. The summaries must be informative, succinct, grammatical, and obey stylistic writing conventions. We present a method where such individual aspects are learned separately from data (without any hand-eng ..."
Abstract
-
Cited by 15 (1 self)
- Add to MetaCart
(Show Context)
Multi-document summarization involves many aspects of content selection and sur-face realization. The summaries must be informative, succinct, grammatical, and obey stylistic writing conventions. We present a method where such individual aspects are learned separately from data (without any hand-engineering) but optimized jointly using an integer linear programme. The ILP framework allows us to combine the decisions of the expert learners and to select and rewrite source content through a mixture of objective setting, soft and hard constraints. Experimental results on the TAC-08 data set show that our model achieves state-of-the-art performance using ROUGE and signifi-cantly improves the informativeness of the summaries. 1
Automatic generation of story highlights
- In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics
, 2010
"... In this paper we present a joint content selection and compression model for single-document summarization. The model operates over a phrase-based representation of the source document which we obtain by merging information from PCFG parse trees and dependency graphs. Using an integer linear program ..."
Abstract
-
Cited by 13 (2 self)
- Add to MetaCart
(Show Context)
In this paper we present a joint content selection and compression model for single-document summarization. The model operates over a phrase-based representation of the source document which we obtain by merging information from PCFG parse trees and dependency graphs. Using an integer linear programming formulation, the model learns to select and combine phrases subject to length, coverage and grammar constraints. We evaluate the approach on the task of generating “story highlights”—a small number of brief, self-contained sentences that allow readers to quickly gather information on news stories. Experimental results show that the model’s output is comparable to human-written highlights in terms of both grammaticality and content. 1
Bayesian Symbol-Refined Tree Substitution Grammars for Syntactic Parsing
"... We propose Symbol-Refined Tree Substitution Grammars (SR-TSGs) for syntactic parsing. An SR-TSG is an extension of the conventional TSG model where each nonterminal symbol can be refined (subcategorized) to fit the training data. We aim to provide a unified model where TSG rules and symbol refinemen ..."
Abstract
-
Cited by 11 (0 self)
- Add to MetaCart
(Show Context)
We propose Symbol-Refined Tree Substitution Grammars (SR-TSGs) for syntactic parsing. An SR-TSG is an extension of the conventional TSG model where each nonterminal symbol can be refined (subcategorized) to fit the training data. We aim to provide a unified model where TSG rules and symbol refinement are learned from training data in a fully automatic and consistent fashion. We present a novel probabilistic SR-TSG model based on the hierarchical Pitman-Yor Process to encode backoff smoothing from a fine-grained SR-TSG to simpler CFG rules, and develop an efficient training method based on Markov Chain Monte Carlo (MCMC) sampling. Our SR-TSG parser achieves an F1 score of 92.4% in the Wall Street Journal (WSJ) English Penn Treebank parsing task, which is a 7.7 point improvement over a conventional Bayesian TSG parser, and better than state-of-the-art discriminative reranking parsers. 1
Multi-Sentence Compression: Finding Shortest Paths in Word Graphs
"... We consider the task of summarizing a cluster of related sentences with a short sentence which we call multi-sentence compression and present a simple approach based on shortest paths in word graphs. The advantage and the novelty of the proposed method is that it is syntax-lean and requires little m ..."
Abstract
-
Cited by 10 (0 self)
- Add to MetaCart
We consider the task of summarizing a cluster of related sentences with a short sentence which we call multi-sentence compression and present a simple approach based on shortest paths in word graphs. The advantage and the novelty of the proposed method is that it is syntax-lean and requires little more than a tokenizer and a tagger. Despite its simplicity, it is capable of generating grammatical and informative summaries as our experiments with English and Spanish data demonstrate.
Discourse Constraints for Document Compression
"... Sentence compression holds promise for many applications ranging from summarization to subtitle generation. The task is typically performed on isolated sentences without taking the surrounding context into account, even though most applications would operate over entire documents. In this article we ..."
Abstract
-
Cited by 9 (1 self)
- Add to MetaCart
(Show Context)
Sentence compression holds promise for many applications ranging from summarization to subtitle generation. The task is typically performed on isolated sentences without taking the surrounding context into account, even though most applications would operate over entire documents. In this article we present a discourse-informed model which is capable of producing document compressions that are coherent and informative. Our model is inspired by theories of local coherence and formulated within the framework of integer linear programming. Experimental results show significant improvements over a state-of-the-art discourse agnostic approach. 1.
Simple English Wikipedia: A New Text Simplification Task
"... In this paper we examine the task of sentence simplification which aims to reduce the reading complexity of a sentence by incorporating more accessible vocabulary and sentence structure. We introduce a new data set that pairs English Wikipedia with Simple English Wikipedia and is orders of magnitude ..."
Abstract
-
Cited by 9 (2 self)
- Add to MetaCart
(Show Context)
In this paper we examine the task of sentence simplification which aims to reduce the reading complexity of a sentence by incorporating more accessible vocabulary and sentence structure. We introduce a new data set that pairs English Wikipedia with Simple English Wikipedia and is orders of magnitude larger than any previously examined for sentence simplification. The data contains the full range of simplification operations including rewording, reordering, insertion and deletion. We provide an analysis of this corpus as well as preliminary results using a phrase-based translation approach for simplification. 1