Results 1  10
of
339
Consensus and cooperation in networked multiagent systems
 Proceedings of the IEEE
, 2007
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An ove ..."
Abstract

Cited by 765 (2 self)
 Add to MetaCart
(Show Context)
Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in smallworld networks, Markov processes and gossipbased algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with latticetype nearest neighbor interactions. Simulation results are presented that demonstrate the role of smallworld effects on the speed of consensus algorithms and cooperative control of multivehicle formations.
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 569 (9 self)
 Add to MetaCart
(Show Context)
In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chosen element of the given ensemble will achieve an arbitrarily small target probability of error with a probability that approaches one exponentially fast in the length of the code. (By concatenating with an appropriate outer code one can achieve a probability of error that approaches zero exponentially fast in the length of the code with arbitrarily small loss in rate.) Conversely, transmitting at rates above this capacity the probability of error is bounded away from zero by a strictly positive constant which is independent of the length of the code and of the number of iterations performed. Our results are based on the observation that the concentration of the performance of the decoder around its average performance, as observed by Luby et al. [1] in the case of a binarysymmetric channel and a binary messagepassing algorithm, is a general phenomenon. For the particularly important case of beliefpropagation decoders, we provide an effective algorithm to determine the corresponding capacity to any desired degree of accuracy. The ideas presented in this paper are broadly applicable and extensions of the general method to lowdensity paritycheck codes over larger alphabets, turbo codes, and other concatenated coding schemes are outlined.
Turbo decoding as an instance of Pearl’s belief propagation algorithm
 IEEE Journal on Selected Areas in Communications
, 1998
"... Abstract—In this paper, we will describe the close connection between the now celebrated iterative turbo decoding algorithm of Berrou et al. and an algorithm that has been well known in the artificial intelligence community for a decade, but which is relatively unknown to information theorists: Pear ..."
Abstract

Cited by 399 (16 self)
 Add to MetaCart
(Show Context)
Abstract—In this paper, we will describe the close connection between the now celebrated iterative turbo decoding algorithm of Berrou et al. and an algorithm that has been well known in the artificial intelligence community for a decade, but which is relatively unknown to information theorists: Pearl’s belief propagation algorithm. We shall see that if Pearl’s algorithm is applied to the “belief network ” of a parallel concatenation of two or more codes, the turbo decoding algorithm immediately results. Unfortunately, however, this belief diagram has loops, and Pearl only proved that his algorithm works when there are no loops, so an explanation of the excellent experimental performance of turbo decoding is still lacking. However, we shall also show that Pearl’s algorithm can be used to routinely derive previously known iterative, but suboptimal, decoding algorithms for a number of other errorcontrol systems, including Gallager’s
On the design of lowdensity paritycheck codes within 0.0045 dB of the Shannon limit
 IEEE COMMUNICATIONS LETTERS
, 2001
"... We develop improved algorithms to construct good lowdensity paritycheck codes that approach the Shannon limit very closely. For rate 1/2, the best code found has a threshold within 0.0045 dB of the Shannon limit of the binaryinput additive white Gaussian noise channel. Simulation results with a ..."
Abstract

Cited by 304 (6 self)
 Add to MetaCart
(Show Context)
We develop improved algorithms to construct good lowdensity paritycheck codes that approach the Shannon limit very closely. For rate 1/2, the best code found has a threshold within 0.0045 dB of the Shannon limit of the binaryinput additive white Gaussian noise channel. Simulation results with a somewhat simpler code show that we can achieve within 0.04 dB of the Shannon limit at a bit error rate of 10 T using a block length of 10 U.
Practical LossResilient Codes
, 1997
"... We present a randomized construction of lineartime encodable and decodable codes that can transmit over lossy channels at rates extremely close to capacity. The encoding and decoding algorithms for these codes have fast and simple software implementations. Partial implementations of our algorithms ..."
Abstract

Cited by 284 (26 self)
 Add to MetaCart
We present a randomized construction of lineartime encodable and decodable codes that can transmit over lossy channels at rates extremely close to capacity. The encoding and decoding algorithms for these codes have fast and simple software implementations. Partial implementations of our algorithms are faster by orders of magnitude than the best software implementations of any previous algorithm for this problem. We expect these codes will be extremely useful for applications such as realtime audio and video transmission over the Internet, where lossy channels are common and fast decoding is a requirement. Despite the simplicity of the algorithms, their design and analysis are mathematically intricate. The design requires the careful choice of a random irregular bipartite graph, where the structure of the irregular graph is extremely important. We model the progress of the decoding algorithm by a set of differential equations. The solution to these equations can then be expressed as p...
Analysis of sumproduct decoding of lowdensity paritycheck codes using a Gaussian approximation
 IEEE TRANS. INFORM. THEORY
, 2001
"... Density evolution is an algorithm for computing the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding. For memoryless binaryinput continuousoutput additive white Gaussian noise (AWGN) channels and sumproduct decoders, we use a Gaussian approximation for message densi ..."
Abstract

Cited by 240 (2 self)
 Add to MetaCart
(Show Context)
Density evolution is an algorithm for computing the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding. For memoryless binaryinput continuousoutput additive white Gaussian noise (AWGN) channels and sumproduct decoders, we use a Gaussian approximation for message densities under density evolution to simplify the analysis of the decoding algorithm. We convert the infinitedimensional problem of iteratively calculating message densities, which is needed to find the exact threshold, to a onedimensional problem of updating means of Gaussian densities. This simplification not only allows us to calculate the threshold quickly and to understand the behavior of the decoder better, but also makes it easier to design good irregular LDPC codes for AWGN channels. For various regular LDPC codes we have examined, thresholds can be estimated within 0.1 dB of the exact value. For rates between 0.5 and 0.9, codes designed using the Gaussian approximation perform within 0.02 dB of the best performing codes found so far by using density evolution when the maximum variable degree is IH. We show that by using the Gaussian approximation, we can visualize the sumproduct decoding algorithm. We also show that the optimization of degree distributions can be understood and done graphically using the visualization.
Improved lowdensity paritycheck codes using irregular graphs
 IEEE Trans. Inform. Theory
, 2001
"... Abstract—We construct new families of errorcorrecting codes based on Gallager’s lowdensity paritycheck codes. We improve on Gallager’s results by introducing irregular paritycheck matrices and a new rigorous analysis of harddecision decoding of these codes. We also provide efficient methods for ..."
Abstract

Cited by 222 (15 self)
 Add to MetaCart
Abstract—We construct new families of errorcorrecting codes based on Gallager’s lowdensity paritycheck codes. We improve on Gallager’s results by introducing irregular paritycheck matrices and a new rigorous analysis of harddecision decoding of these codes. We also provide efficient methods for finding good irregular structures for such decoding algorithms. Our rigorous analysis based on martingales, our methodology for constructing good irregular codes, and the demonstration that irregular structure improves performance constitute key points of our contribution. We also consider irregular codes under belief propagation. We report the results of experiments testing the efficacy of irregular codes on both binarysymmetric and Gaussian channels. For example, using belief propagation, for rate I R codes on 16 000 bits over a binarysymmetric channel, previous lowdensity paritycheck codes can correct up to approximately 16 % errors, while our codes correct over 17%. In some cases our results come very close to reported results for turbo codes, suggesting that variations of irregular low density paritycheck codes may be able to match or beat turbo code performance. Index Terms—Belief propagation, concentration theorem, Gallager codes, irregular codes, lowdensity paritycheck codes.
2001a) The capacity of lowdensity parity check codes under messagepassing decoding
 IEEE Trans. Info. Theory
"... ..."
(Show Context)