Results 1  10
of
130
The Free Haven Project: Distributed Anonymous Storage Service
 In Proceedings of the Workshop on Design Issues in Anonymity and Unobservability
, 2000
"... We present a design for a system of anonymous storage which resists the attempts of powerful adversaries to find or destroy any stored data. We enumerate distinct notions of anonymity for each party in the system, and suggest a way to classify anonymous systems based on the kinds of anonymity provid ..."
Abstract

Cited by 244 (7 self)
 Add to MetaCart
(Show Context)
We present a design for a system of anonymous storage which resists the attempts of powerful adversaries to find or destroy any stored data. We enumerate distinct notions of anonymity for each party in the system, and suggest a way to classify anonymous systems based on the kinds of anonymity provided. Our design ensures the availability of each document for a publisherspecified lifetime. A reputation system provides server accountability by limiting the damage caused from misbehaving servers. We identify attacks and defenses against anonymous storage services, and close with a list of problems which are currently unsolved.
Defending Against Statistical Steganalysis
 10th USENIX Security Symposium
, 2001
"... The main purpose of steganography is to hide the occurrence of communication. While most methods in use today are invisible to an observer's senses, mathematical analysis may reveal statistical anomalies in the stego medium. These discrepancies expose the fact that hidden communication is happe ..."
Abstract

Cited by 162 (1 self)
 Add to MetaCart
(Show Context)
The main purpose of steganography is to hide the occurrence of communication. While most methods in use today are invisible to an observer's senses, mathematical analysis may reveal statistical anomalies in the stego medium. These discrepancies expose the fact that hidden communication is happening. This paper presents improved methods for information hiding. One method uses probabilistic embedding to minimize modifications to the cover medium. Another method employs errorcorrecting codes, which allow the embedding process to choose which bits to modify in a way that decreases the likelihood of being detected. In addition, we can hide multiple data sets in the same cover medium to provide plausible deniability.
Pseudorandom generators without the XOR Lemma
, 1998
"... Madhu Sudan y Luca Trevisan z Salil Vadhan x Abstract Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem solvable in time 2 O(n) and having circuit complexity 2 n) (for all but finitely many n) then P = BPP. This result is a culmination of a serie ..."
Abstract

Cited by 137 (21 self)
 Add to MetaCart
Madhu Sudan y Luca Trevisan z Salil Vadhan x Abstract Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem solvable in time 2 O(n) and having circuit complexity 2 n) (for all but finitely many n) then P = BPP. This result is a culmination of a series of works showing connections between the existence of hard predicates and the existence of good pseudorandom generators. The construction of Impagliazzo and Wigderson goes through three phases of "hardness amplification" (a multivariate polynomial encoding, a first derandomized XOR Lemma, and a second derandomized XOR Lemma) that are composed with the Nisan Wigderson [NW94] generator. In this paper we present two different approaches to proving the main result of Impagliazzo and Wigderson. In developing each approach, we introduce new techniques and prove new results that could be useful in future improvements and/or applications of hardnessrandomness tradeoffs. Our first result is that when (a modified version of) the NisanWigderson generator construction is applied with a "mildly" hard predicate, the result is a generator that produces a distribution indistinguishable from having large minentropy. An extractor can then be used to produce a distribution computationally indistinguishable from uniform. This is the first construction of a pseudorandom generator that works with a mildly hard predicate without doing hardness amplification. We then show that in the ImpagliazzoWigderson construction only the first hardnessamplification phase (encoding with multivariate polynomial) is necessary, since it already gives the required averagecase hardness. We prove this result by (i) establishing a connection between the hardnessamplification problem and a listdecoding...
Extractors and Pseudorandom Generators
 Journal of the ACM
, 1999
"... We introduce a new approach to constructing extractors. Extractors are algorithms that transform a "weakly random" distribution into an almost uniform distribution. Explicit constructions of extractors have a variety of important applications, and tend to be very difficult to obtain. ..."
Abstract

Cited by 113 (6 self)
 Add to MetaCart
We introduce a new approach to constructing extractors. Extractors are algorithms that transform a "weakly random" distribution into an almost uniform distribution. Explicit constructions of extractors have a variety of important applications, and tend to be very difficult to obtain.
On the Limits of NonApproximability of Lattice Problems
, 1998
"... We show simple constantround interactive proof systems for problems capturing the approximability, to within a factor of p n, of optimization problems in integer lattices; specifically, the closest vector problem (CVP), and the shortest vector problem (SVP). These interactive proofs are for th ..."
Abstract

Cited by 102 (3 self)
 Add to MetaCart
We show simple constantround interactive proof systems for problems capturing the approximability, to within a factor of p n, of optimization problems in integer lattices; specifically, the closest vector problem (CVP), and the shortest vector problem (SVP). These interactive proofs are for the "coNP direction"; that is, we give an interactive protocol showing that a vector is "far" from the lattice (for CVP), and an interactive protocol showing that the shortestlatticevector is "long" (for SVP). Furthermore, these interactive proof systems are HonestVerifier Perfect ZeroKnowledge. We conclude that approximating CVP (resp., SVP) within a factor of p n is in NP " coAM. Thus, it seems unlikely that approximating these problems to within a p n factor is NPhard. Previously, for the CVP (resp., SVP) problem, Lagarias et. al., Hastad and Banaszczyk showed that the gap problem corresponding to approximating CVP (resp., SVP) within n is in NP " coNP . On the other hand, Ar...
NonApproximability Results for Optimization Problems on Bounded Degree Instances
, 2001
"... We prove some nonapproximability results for restrictions of basic combinatorial optimization problems to instances of bounded \degree" or bounded \width." Speci cally: We prove that the Max 3SAT problem on instances where each variable occurs in at most B clauses, is hard to approxima ..."
Abstract

Cited by 93 (4 self)
 Add to MetaCart
We prove some nonapproximability results for restrictions of basic combinatorial optimization problems to instances of bounded \degree" or bounded \width." Speci cally: We prove that the Max 3SAT problem on instances where each variable occurs in at most B clauses, is hard to approximate to within a factor 7=8+O(1= B), unless RP = NP . Hastad [18] proved that the problem is approximable to within a factor 7=8+1=64B in polynomial time, and that is hard to approximate to within a factor 7=8 + 1=(log B) 3 . Our result uses a new randomized reduction from general instances of Max 3SAT to boundedoccurrences instances. The randomized reduction applies to other Max SNP problems as well.
TestU01: A C library for empirical testing of random number generators
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 2007
"... We introduce TestU01, a software library implemented in the ANSI C language, and offering a collection of utilities for the empirical statistical testing of uniform random number generators (RNGs). It provides general implementations of the classical statistical tests for RNGs, as well as several ot ..."
Abstract

Cited by 80 (4 self)
 Add to MetaCart
We introduce TestU01, a software library implemented in the ANSI C language, and offering a collection of utilities for the empirical statistical testing of uniform random number generators (RNGs). It provides general implementations of the classical statistical tests for RNGs, as well as several others tests proposed in the literature, and some original ones. Predefined tests suites for sequences of uniform random numbers over the interval (0, 1) and for bit sequences are available. Tools are also offered to perform systematic studies of the interaction between a specific test and the structure of the point sets produced by a given family of RNGs. That is, for a given kind of test and a given class of RNGs, to determine how large should be the sample size of the test, as a function of the generator’s period length, before the generator starts to fail the test systematically. Finally, the library provides various types of generators implemented in generic form, as well as many specific generators proposed in the literature or found in widelyused software. The tests can be applied to instances of the generators predefined in the library, or to userdefined generators, or to streams of random numbers produced by any kind of device or stored in files. Besides introducing TestU01, the paper provides a survey and a classification of statistical tests for RNGs. It also applies batteries of tests to a long list of widely used RNGs.
Fast parallel circuits for the quantum Fourier transform
 PROCEEDINGS 41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS’00)
, 2000
"... We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n + log log(1/ε)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2 n with error bounded by ε. Thus, even for exponentially small error, our ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
(Show Context)
We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n + log log(1/ε)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2 n with error bounded by ε. Thus, even for exponentially small error, our circuits have depth O(log n). The best previous depth bound was O(n), even for approximations with constant error. Moreover, our circuits have size O(n log(n/ε)). We also give an upper bound of O(n(log n) 2 log log n) on the circuit size of the exact QFT modulo 2 n, for which the best previous bound was O(n 2). As an application of the above depth bound, we show that Shor’s factoring algorithm may be based on quantum circuits with depth only O(log n) and polynomialsize, in combination with classical polynomialtime pre and postprocessing. In the language of computational complexity, this implies that factoring is in the complexity class ZPP BQNC, where BQNC is the class of problems computable with boundederror probability by quantum circuits with polylogarithmic depth and polynomial size. Finally, we prove an Ω(log n) lower bound on the depth complexity of approximations of the
In Search of an Easy Witness: Exponential Time vs. Probabilistic Polynomial Time
, 2002
"... Restricting the search space {0, 1} n to the set of truth tables of “easy ” Boolean functions on log n variables, as well as using some known hardnessrandomness tradeoffs, we establish a number of results relating the complexity of exponentialtime and probabilistic polynomialtime complexity class ..."
Abstract

Cited by 54 (7 self)
 Add to MetaCart
(Show Context)
Restricting the search space {0, 1} n to the set of truth tables of “easy ” Boolean functions on log n variables, as well as using some known hardnessrandomness tradeoffs, we establish a number of results relating the complexity of exponentialtime and probabilistic polynomialtime complexity classes. In particular, we show that NEXP ⊂ P/poly ⇔ NEXP = MA; this can be interpreted as saying that no derandomization of MA (and, hence, of promiseBPP) is possible unless NEXP contains a hard Boolean function. We also prove several downward closure results for ZPP, RP, BPP, and MA; e.g., we show EXP = BPP ⇔ EE = BPE, where EE is the doubleexponential time class and BPE is the exponentialtime analogue of BPP.
Encrypting Virtual Memory
 In Proceedings of the Ninth USENIX Security Symposium
, 2000
"... In modern operating systems, cryptographic file systems can protect confidential data from unauthorized access. However, once an authorized process has accessed data from a cryptographic file system, the data can appear as plaintext in the unprotected virtual memory backing store, even after system ..."
Abstract

Cited by 50 (0 self)
 Add to MetaCart
(Show Context)
In modern operating systems, cryptographic file systems can protect confidential data from unauthorized access. However, once an authorized process has accessed data from a cryptographic file system, the data can appear as plaintext in the unprotected virtual memory backing store, even after system shutdown. The solution described in this paper uses swap encryption for processes in possession of confidential data. Volatile encryption keys are chosen randomly, and remain valid only for short time periods. Invalid encryption keys are deleted, effectively erasing all data that was encrypted with them. The swap encryption system has been implemented for the UVM [7] virtual memory system and its performance is acceptable.