Results 1  10
of
115
Reachability of uncertain linear systems using zonotopes
 IN HYBRID SYSTEMS : COMPUTATION AND CONTROL, LNCS 3414
, 2005
"... We present a method for the computation of reachable sets of uncertain linear systems. The main innovation of the method consists in the use of zonotopes for reachable set representation. Zonotopes are special polytopes with several interesting properties: they can be encoded efficiently, they are ..."
Abstract

Cited by 97 (14 self)
 Add to MetaCart
(Show Context)
We present a method for the computation of reachable sets of uncertain linear systems. The main innovation of the method consists in the use of zonotopes for reachable set representation. Zonotopes are special polytopes with several interesting properties: they can be encoded efficiently, they are closed under linear transformations and Minkowski sum. The resulting method has been used to treat several examples and has shown great performances for high dimensional systems. An extension of the method for the verification of piecewise linear hybrid systems is proposed.
Safety Verification of Hybrid Systems Using Barrier Certificates
 In Hybrid Systems: Computation and Control
, 2004
"... This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
(Show Context)
This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates the unsafe region from all possible trajectories starting from a given set of initial conditions, hence providing an exact proof of system safety. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes nonlinearity, uncertainty, and constraints can be handled directly within this framework.
Differential Dynamic Logic for Hybrid Systems
, 2007
"... Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, ..."
Abstract

Cited by 78 (46 self)
 Add to MetaCart
Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce a dynamic logic for hybrid programs, which is a program notation for hybrid systems. As a verification technique that is suitable for automation, we introduce a free variable proof calculus with a novel combination of realvalued free variables and Skolemisation for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus is compositional, i.e., it reduces properties of hybrid programs to properties of their parts. Our main result proves that this calculus axiomatises the transition behaviour of hybrid systems completely relative to differential equations. In a case study with cooperating traffic agents of the European Train Control System, we further show that our calculus is wellsuited for verifying realistic hybrid systems with parametric system dynamics.
Bisimilar Linear Systems
, 2001
"... The notion of bisimulation in theoretical computer science is one of the main complexity reduction methods for the analysis and synthesis of labeled transition systems. Bisimulations are special quotients of the state space that preserve many important properties expressible in temporal logics, and, ..."
Abstract

Cited by 68 (14 self)
 Add to MetaCart
The notion of bisimulation in theoretical computer science is one of the main complexity reduction methods for the analysis and synthesis of labeled transition systems. Bisimulations are special quotients of the state space that preserve many important properties expressible in temporal logics, and, in particular, reachability. In this paper, the framework of bisimilar transition systems is applied to various transition systems that are generated by linear control systems. Given a discretetime or continuoustime linear system, and a finite observation map, we characterize linear quotient maps that result in quotient transition systems that are bisimilar to the original system. Interestingly, the characterizations for discretetime systems are more restrictive than for continuoustime systems, due to the existence of an atomic time step. We show that computing the coarsest bisimulation, which results in maximum complexity reduction, corresponds to computing the maximal controlled or reachability invariant subspace inside the kernel of the observations map. These results establish strong connections between complexity reduction concepts in control theory and computer science.
Computing differential invariants of hybrid systems as fixedpoints
, 2008
"... Abstract. We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations whose righthand sides are polynomials in the state variables. In order to verify nontrivial systems without solving their differential equations and without numerical errors, ..."
Abstract

Cited by 58 (21 self)
 Add to MetaCart
Abstract. We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations whose righthand sides are polynomials in the state variables. In order to verify nontrivial systems without solving their differential equations and without numerical errors, we use a continuous generalization of induction, for which our algorithm computes the required differential invariants. As a means for combining local differential invariants into global system invariants in a sound way, our fixedpoint algorithm works with a compositional verification logic for hybrid systems. To improve the verification power, we further introduce a saturation procedure that refines the system dynamics successively with differential invariants until safety becomes provable. By complementing our symbolic verification algorithm with a robust version of numerical falsification, we obtain a fast and sound verification procedure. We verify roundabout maneuvers in air traffic management and collision avoidance in train control.
A framework for worstcase and stochastic safety verification using barrier certificates
 IEEE TRANSACTIONS ON AUTOMATIC CONTROL
, 2007
"... This paper presents a methodology for safety verification of continuous and hybrid systems in the worstcase and stochastic settings. In the worstcase setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do ..."
Abstract

Cited by 50 (1 self)
 Add to MetaCart
This paper presents a methodology for safety verification of continuous and hybrid systems in the worstcase and stochastic settings. In the worstcase setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method.
On efficient representation and computation of reachable sets for hybrid systems
 In HSCC’2003, LNCS 2289
, 2003
"... Abstract. Computing reachable sets is an essential step in most analysis and synthesis techniques for hybrid systems. The representation of these sets has a deciding impact on the computational complexity and thus the applicability of these techniques. This paper presents a new approach for approxim ..."
Abstract

Cited by 45 (10 self)
 Add to MetaCart
(Show Context)
Abstract. Computing reachable sets is an essential step in most analysis and synthesis techniques for hybrid systems. The representation of these sets has a deciding impact on the computational complexity and thus the applicability of these techniques. This paper presents a new approach for approximating reachable sets using oriented rectangular hulls (ORHs), the orientations of which are determined by singular value decompositions of sample covariance matrices for sets of reachable states. The orientations keep the overapproximation of the reachable sets small in most cases with a complexity of low polynomial order with respect to the dimension of the continuous state space. We show how the use of ORHs can improve the efficiency of reachable set computation significantly for hybrid systems with nonlinear continuous dynamics.
Adaptive RRTs for validating hybrid robotic control systems
 in Algorithmic Foundations of Robotics VI
, 2005
"... Abstract. Most robot control and planning algorithms are complex, involving a combination of reactive controllers, behaviorbased controllers, and deliberative controllers. The switching between different behaviors or controllers makes such systems hybrid, i.e. combining discrete and continuous dyna ..."
Abstract

Cited by 43 (3 self)
 Add to MetaCart
(Show Context)
Abstract. Most robot control and planning algorithms are complex, involving a combination of reactive controllers, behaviorbased controllers, and deliberative controllers. The switching between different behaviors or controllers makes such systems hybrid, i.e. combining discrete and continuous dynamics. While proofs of convergence, robustness and stability are often available for simple controllers under a carefully crafted set of operating conditions, there is no systematic approach to experimenting with, testing, and validating the performance of complex hybrid control systems. In this paper we address the problem of generating sets of conditions (inputs, disturbances, and parameters) that might be used to ”test ” a given hybrid system. We use the method of Rapidly exploring Random Trees (RRTs) to obtain test inputs. We extend the traditional RRT, which only searches over continuous inputs, to a new algorithm, called the Rapidly exploring Random Forest of Trees (RRFT), which can also search over time invariant parameters by growing a set of trees for each parameter value choice. We introduce new measures for coverage and tree growth that allows us to dynamically allocate our resources among the set of trees and to plant new trees when the growth rate of existing ones slows to an unacceptable level. We demonstrate the application of RRFT to testing and validation of aerial robotic control systems. 1
Efficient computation of reachable sets of linear timeinvariant systems with inputs
 in HSCC’06, vol. 3927 in LNCS
, 2006
"... Abstract. This work is concerned with the problem of computing the set of reachable states for linear timeinvariant systems with bounded inputs. Our main contribution is a novel algorithm which improves significantly the computational complexity of reachability analysis. Algorithms to compute over ..."
Abstract

Cited by 38 (7 self)
 Add to MetaCart
(Show Context)
Abstract. This work is concerned with the problem of computing the set of reachable states for linear timeinvariant systems with bounded inputs. Our main contribution is a novel algorithm which improves significantly the computational complexity of reachability analysis. Algorithms to compute over and underapproximations of the reachable sets are proposed as well. These algorithms are not subject to the wrapping effect and therefore our approximations are tight. We show that these approximations are useful in the context of hybrid systems verification and control synthesis. The performance of a prototype implementation of the algorithm confirms its qualities and gives hope for scaling up verification technology for continuous and hybrid systems. 1
Reachability Analysis of Nonlinear Systems with Uncertain Parameters using Conservative Linearization
"... Given an initial set of a nonlinear system with uncertain parameters and inputs, the set of states that can possibly be reached is computed. The approach is based on local linearizations of the nonlinear system, while linearization errors are considered by Lagrange remainders. These errors are adde ..."
Abstract

Cited by 33 (15 self)
 Add to MetaCart
Given an initial set of a nonlinear system with uncertain parameters and inputs, the set of states that can possibly be reached is computed. The approach is based on local linearizations of the nonlinear system, while linearization errors are considered by Lagrange remainders. These errors are added as uncertain inputs, such that the reachable set of the locally linearized system encloses the one of the original system. The linearization error is controlled by splitting of reachable sets. Reachable sets are represented by zonotopes, allowing an efficient computation in relatively highdimensional space.