Results 1 
2 of
2
A Theory of Networks for Approximation and Learning
 Laboratory, Massachusetts Institute of Technology
, 1989
"... Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, t ..."
Abstract

Cited by 235 (24 self)
 Add to MetaCart
Learning an inputoutput mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multidimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nonlinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. Wedevelop a theoretical framework for approximation based on regularization techniques that leads to a class of threelayer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the wellknown Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods suchasParzen windows and potential functions and to several neural network algorithms, suchas Kanerva's associative memory,backpropagation and Kohonen's topology preserving map. They also haveaninteresting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Parallel networks for machine vision
 MIT AI Memo
, 1988
"... The amount of computation required to solve many early vision problems is prodigious, and so it has long been thought that systems that operate in a reasonable amount of time will only become feasible when parallel systems become available. Such systems now exist in digital form, but most are large ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
The amount of computation required to solve many early vision problems is prodigious, and so it has long been thought that systems that operate in a reasonable amount of time will only become feasible when parallel systems become available. Such systems now exist in digital form, but most are large and expensive. These machines constitute an invaluable testbed for the development of new algorithms, but they can probably not be scaled down rapidly in both physical size and cost, despite continued advances in semiconductor technology and machine architecture. Simple analog networks can perform interesting computations, as has been known for a long time. We have reached the point where it is feasible to experiment with implementation of these idea in VLSI form, particularly if we focus on networks composed of locally interconnected passive elements, linear amplifiers, and simple nonlinear components. While there have been excursions into the development of ideas in this area since the very beginnings of work on machine vision, much work remains to be done. Progress will depend on careful attention to matching of the capabilities of simple networks to the needs of early vision. Note that this is not at all intended to be anything like a review of the field, but merely a collection of some ideas that seem to be interesting. See also pp 531573,
{\it Artificial Intelligence at MIT: Expanding Frontiers},
edited by Patrick H. Winston and Sarah A. Shellard,
MIT Press.