Results 1 - 10
of
332
MonoSLAM: Realtime single camera SLAM
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2007
"... Abstract—We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the “pure vision ” domain of ..."
Abstract
-
Cited by 490 (26 self)
- Add to MetaCart
(Show Context)
Abstract—We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the “pure vision ” domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera. Index Terms—Autonomous vehicles, 3D/stereo scene analysis, tracking. Ç 1
Robotic mapping: A survey
- EXPLORING ARTIFICIAL INTELLIGENCE IN THE NEW MILLENIUM
, 2002
"... This article provides a comprehensive introduction into the field of robotic mapping, with a focus on indoor mapping. It describes and compares various probabilistic techniques, as they are presently being applied to a vast array of mobile robot mapping problems. The history of robotic mapping is al ..."
Abstract
-
Cited by 369 (6 self)
- Add to MetaCart
(Show Context)
This article provides a comprehensive introduction into the field of robotic mapping, with a focus on indoor mapping. It describes and compares various probabilistic techniques, as they are presently being applied to a vast array of mobile robot mapping problems. The history of robotic mapping is also described, along with an extensive list of open research problems.
KinectFusion: Real-Time Dense Surface Mapping and Tracking
"... We present a system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware. We fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface mo ..."
Abstract
-
Cited by 280 (25 self)
- Add to MetaCart
We present a system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware. We fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real-time. The current sensor pose is simultaneously obtained by tracking the live depth frame relative to the global model using a coarse-to-fine iterative closest point (ICP) algorithm, which uses all of the observed depth data available. We demonstrate the advantages of tracking against the growing full surface model compared with frame-to-frame tracking, obtaining tracking and mapping results
Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks
, 2002
"... A key component of a mobile robot system is the ability to localize itself accurately and, simultaneously, to build a map of the environment. Most of the existing algorithms are based on laser range finders, sonar sensors or artificial landmarks. In this paper, we describe a vision-based mobile robo ..."
Abstract
-
Cited by 279 (12 self)
- Add to MetaCart
A key component of a mobile robot system is the ability to localize itself accurately and, simultaneously, to build a map of the environment. Most of the existing algorithms are based on laser range finders, sonar sensors or artificial landmarks. In this paper, we describe a vision-based mobile robot localization and mapping algorithm, which uses scale-invariant image features as natural landmarks in unmodified environments. The invariance of these features to image translation, scaling and rotation makes them suitable landmarks for mobile robot localization and map building. With our Triclops stereo vision system, these landmarks are localized and robot ego-motion is estimated by least-squares minimization of the matched landmarks. Feature viewpoint variation and occlusion are taken into account by maintaining a view direction for each landmark. Experiments show that these visual landmarks are robustly matched, robot pose is estimated and a consistent three-dimensional map is built. As image features are not noise-free, we carry out error analysis for the landmark positions and the robot pose. We use Kalman filters to track these landmarks in a dynamic environment, resulting in a database map with landmark positional uncertainty.
Data Association in Stochastic Mapping Using the Joint Compatibility Test
, 2001
"... In this paper, we address the problem of robust data association for simultaneous vehicle localization and map building. We show that the classical gated nearest neighbor approach, which considers each matching between sensor observations and features independently, ignores the fact that measurement ..."
Abstract
-
Cited by 252 (15 self)
- Add to MetaCart
In this paper, we address the problem of robust data association for simultaneous vehicle localization and map building. We show that the classical gated nearest neighbor approach, which considers each matching between sensor observations and features independently, ignores the fact that measurement prediction errors are correlated. This leads to easily accepting incorrect matchings when clutter or vehicle errors increase. We propose a new measurement of the joint compatibility of a set of pairings that successfully rejects spurious matchings. We show experimentally that this restrictive criterion can be used to efficiently search for the best solution to data association. Unlike the nearest neighbor, this method provides a robust solution in complex situations, such as cluttered environments or when revisiting previously mapped regions.
An Online Mapping Algorithm for Teams of Mobile Robots
- International Journal of Robotics Research
, 2001
"... We propose a new probabilistic algorithm for online mapping of unknown environments with teams of robots. At the core of the algorithm is a technique that combines fast maximum likelihood map growing with a Monte Carlo localizer that uses particle representations. The combination of both yields an o ..."
Abstract
-
Cited by 235 (14 self)
- Add to MetaCart
We propose a new probabilistic algorithm for online mapping of unknown environments with teams of robots. At the core of the algorithm is a technique that combines fast maximum likelihood map growing with a Monte Carlo localizer that uses particle representations. The combination of both yields an online algorithm that can cope with large odometric errors typically found when mapping an environment with cycles. The algorithm can be implemented distributedly on multiple robot platforms, enabling a team of robots to cooperatively generate a single map of their environment. Finally, an extension is described for acquiring three-dimensional maps, which capture the structure and visual appearance of indoor environments in 3D.
FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges
"... In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM that overcomes important deficiencies of the original algorithm. We prove convergence of this ..."
Abstract
-
Cited by 225 (7 self)
- Add to MetaCart
(Show Context)
In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM that overcomes important deficiencies of the original algorithm. We prove convergence of this new algorithm for linear SLAM problems and provide real-world experimental results that illustrate an order of magnitude improvement in accuracy over the original FastSLAM algorithm. 1
Probabilistic Algorithms in Robotics
- AI Magazine vol
"... This article describes a methodology for programming robots known as probabilistic robotics. The probabilistic paradigm pays tribute to the inherent uncertainty in robot perception, relying on explicit representations of uncertainty when determining what to do. This article surveys some of the progr ..."
Abstract
-
Cited by 199 (6 self)
- Add to MetaCart
(Show Context)
This article describes a methodology for programming robots known as probabilistic robotics. The probabilistic paradigm pays tribute to the inherent uncertainty in robot perception, relying on explicit representations of uncertainty when determining what to do. This article surveys some of the progress in the field, using in-depth examples to illustrate some of the nuts and bolts of the basic approach. Our central conjecture is that the probabilistic approach to robotics scales better to complex real-world applications than approaches that ignore a robot’s uncertainty. 1
FAB-MAP: Probabilistic localization and mapping in the space of appearance
- JOURNAL OF FIELD ROBOTICS DOI 10.1002/ROB 914 • JOURNAL OF FIELD ROBOTICS—2009 APPEARANCE. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
, 2008
"... This paper describes a probabilistic approach to the problem of recognizing places based on their appearance. The system we present is not limited to localization, but can determine that a new observation comes from a previously unseen place, and so augment its map. Effectively this is a SLAM system ..."
Abstract
-
Cited by 186 (13 self)
- Add to MetaCart
This paper describes a probabilistic approach to the problem of recognizing places based on their appearance. The system we present is not limited to localization, but can determine that a new observation comes from a previously unseen place, and so augment its map. Effectively this is a SLAM system in the space of appearance. Our probabilistic approach allows us to explicitly account for perceptual aliasing in the environment—identical but indistinctive observations receive a low probability of having come from the same place. We achieve this by learning a generative model of place appearance. By partitioning the learning problem into two parts, new place models can be learned online from only a single observation of a place. The algorithm complexity is linear in the number of places in the map, and is particularly suitable for online loop closure detection in mo-bile robotics.