Results 1 - 10
of
219
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method)
, 2000
"... While Eulerian schemes work well for most gas flows, they have been shown to admit nonphysical oscillations near some material interfaces. In contrast,... ..."
Abstract
-
Cited by 323 (44 self)
- Add to MetaCart
While Eulerian schemes work well for most gas flows, they have been shown to admit nonphysical oscillations near some material interfaces. In contrast,...
Animation and Rendering of Complex Water Surfaces
, 2002
"... We present a new method for the animation and rendering of photorealistic water effects. Our method is designed to produce visually plausible three dimensional effects, for example the pouring of water into a glass (see figure 1) and the breaking of an ocean wave, in a manner which can be used in a ..."
Abstract
-
Cited by 274 (22 self)
- Add to MetaCart
We present a new method for the animation and rendering of photorealistic water effects. Our method is designed to produce visually plausible three dimensional effects, for example the pouring of water into a glass (see figure 1) and the breaking of an ocean wave, in a manner which can be used in a computer animation environment. In order to better obtain photorealism in the behavior of the simulated water surface, we introduce a new "thickened" front tracking technique to accurately represent the water surface and a new velocity extrapolation method to move the surface in a smooth, water-like manner. The velocity extrapolation method allows us to provide a degree of control to the surface motion, e.g. to generate a windblown look or to force the water to settle quickly. To ensure that the photorealism of the simulation carries over to the final images, we have integrated our method with an advanced physically based rendering system.
A PDE-Based Fast Local Level Set Method
- Journal of Computational Physics
, 1999
"... this paper we localize the level set method. Our localization works in as much generality as does the original method and all of its recent variants [27, 28], but requires an order of magnitude less computing effort. Earlier work on localization was done by Adalsteinsson and Sethian [1]. Our approac ..."
Abstract
-
Cited by 266 (26 self)
- Add to MetaCart
this paper we localize the level set method. Our localization works in as much generality as does the original method and all of its recent variants [27, 28], but requires an order of magnitude less computing effort. Earlier work on localization was done by Adalsteinsson and Sethian [1]. Our approach differs from theirs in that we use only the values of the level set function (or functions, for multiphase flow) and not the explicit location of points in the domain. Our implementation is easy and straightforward and has been used in [9, 14, 27, 28]. Our approach is partial differential equation (PDE) based, in the sense that our localization, extension, and reinitialization are all based on solving different PDEs. This leads to a simple, accurate, and flexible method. Equations (10) and (11) of Section 2 enable us to update the level set function (or functions in the multiphase case) without any stability problems at the boundary of the tube used to localize the evolution. Such equations are new and do not appear in [1]. In fact, the technique used in [1] has boundary stability problems because Eq. (2) or (3) (the evolution equation of the level set function) is solved right up to this boundary. In contrast, in our method, the speed of evolution degenerates smoothly to 0 at this boundary. This is achieved by modifying the evolution of the level set function near the tube boundary but away from the interface. This modification effectively eliminates the boundary stability issues in [1] and has no impact on the correct evolution of the interface. The reinitialization step will reset the level set function to be a signed distance function to the front. There are no boundary issues in our distance reinitialization or extension of velocity field off the interface. Both of the...
Level set methods: An overview and some recent results
- J. Comput. Phys
, 2001
"... The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a ..."
Abstract
-
Cited by 226 (11 self)
- Add to MetaCart
(Show Context)
The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a velocity field �v. This velocity can depend on position, time, the geometry of the interface and the external physics. The interface is captured for later time as the zero level set of a smooth (at least Lipschitz continuous) function ϕ(�x,t), i.e., Γ(t)={�x|ϕ(�x,t)=0}. ϕ is positive inside Ω, negative outside Ω andiszeroonΓ(t). Topological merging and breaking are well defined and easily performed. In this review article we discuss recent variants and extensions, including the motion of curves in three dimensions, the Dynamic Surface Extension method, fast methods for steady state problems, diffusion generated motion and the variational level set approach. We also give a user’s guide to the level set dictionary and technology, couple the method to a wide variety of problems involving external physics, such as compressible and incompressible (possibly reacting) flow, Stefan problems, kinetic crystal growth, epitaxial growth of thin films,
Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms
, 2003
"... We develop a family of fast methods for approximating the solutions to a wide class of static Hamilton–Jacobi PDEs; these fast methods include both semi-Lagrangian and fully Eulerian versions. Numerical solutions to these problems are typically obtained by solving large systems of coupled nonlinear ..."
Abstract
-
Cited by 136 (9 self)
- Add to MetaCart
We develop a family of fast methods for approximating the solutions to a wide class of static Hamilton–Jacobi PDEs; these fast methods include both semi-Lagrangian and fully Eulerian versions. Numerical solutions to these problems are typically obtained by solving large systems of coupled nonlinear discretized equations. Our techniques, which we refer to as “Ordered Upwind Methods” (OUMs), use partial information about the characteristic directions to decouple these nonlinear systems, greatly reducing the computational labor. Our techniques are considered in the context of control-theoretic and front-propagation problems. We begin by discussing existing OUMs, focusing on those designed for isotropic problems. We then introduce a new class of OUMs which decouple systems for general (anisotropic) problems. We prove convergence of one such scheme to the viscosity solution of the corresponding Hamilton–Jacobi PDE. Next, we introduce a set of finite-differences methods based on an analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed, and computational experiments are performed using test problems from computational geometry and seismology.
Animating sand as a fluid
- ACM Trans. Graph. (Proc. SIGGRAPH
, 2005
"... My thesis presents a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can be turned into a sand simulat ..."
Abstract
-
Cited by 128 (4 self)
- Add to MetaCart
(Show Context)
My thesis presents a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can be turned into a sand simulator within frictional regime with only a few small additions to account for inter-grain and boundary friction, yet with visually acceptable result. We also propose an alternative method for simulating fluids. Our core representation is a cloud of particles, which allows for accurate and flexible surface tracking and advection, but we use an auxiliary grid to efficiently enforce boundary conditions and incompressibility. We further address the issue of reconstructing a surface from particle data to render each frame. ii Contents ii
A topology preserving level set method for geometric deformable models
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2003
"... Active contour and surface models, also known as deformable models, are powerful image segmentation techniques. Geometric deformable models implemented using level set methods have advantages over parametric models due to their intrinsic behavior, parameterization independence, and ease of implement ..."
Abstract
-
Cited by 117 (7 self)
- Add to MetaCart
(Show Context)
Active contour and surface models, also known as deformable models, are powerful image segmentation techniques. Geometric deformable models implemented using level set methods have advantages over parametric models due to their intrinsic behavior, parameterization independence, and ease of implementation. However, a long claimed advantage of geometric deformable models—the ability to automatically handle topology changes—turns out to be a liability in applications where the object to be segmented has a known topology that must be preserved. In this paper, we present a new class of geometric deformable models designed using a novel topology-preserving level set method, which achieves topology preservation by applying the simple point concept from digital topology. These new models maintain the other advantages of standard geometric deformable models including subpixel accuracy and production of nonintersecting curves or surfaces. Moreover, since the topology-preserving constraint is enforced efficiently through local computations, the resulting algorithm incurs only nominal computational overhead over standard geometric deformable models. Several experiments on simulated and real data are provided to demonstrate the performance of this new deformable model algorithm.
The heterogeneous multiscale method: A review
- COMMUN. COMPUT. PHYS
, 2007
"... This paper gives a systematic introduction to HMM, the heterogeneous multiscale method, including the fundamental design principles behind the HMM philosophy and the main obstacles that have to be overcome when using HMM for a particular problem. This is illustrated by examples from several applic ..."
Abstract
-
Cited by 104 (7 self)
- Add to MetaCart
This paper gives a systematic introduction to HMM, the heterogeneous multiscale method, including the fundamental design principles behind the HMM philosophy and the main obstacles that have to be overcome when using HMM for a particular problem. This is illustrated by examples from several application areas, including complex fluids, micro-fluidics, solids, interface problems, stochastic problems, and statistically self-similar problems. Emphasis is given to the technical tools, such as the various constrained molecular dynamics, that have been developed, in order to apply HMM to these problems. Examples of mathematical results on the error analysis of HMM are presented. The paper ends with a discussion on some of
Reconciling Distance Functions and Level Sets
- Journal of Visual Communication and Image Representation
, 1999
"... This paper is concerned with the simulation of the Partial Differential Equation (PDE) driven evolution of a closed surface by means of an implicit representation. In most applications, the natural choice for the implicit representation is the signed distance function to the closed surface. Osher an ..."
Abstract
-
Cited by 100 (9 self)
- Add to MetaCart
(Show Context)
This paper is concerned with the simulation of the Partial Differential Equation (PDE) driven evolution of a closed surface by means of an implicit representation. In most applications, the natural choice for the implicit representation is the signed distance function to the closed surface. Osher and Sethian propose to evolve the distance function with a Hamilton-Jacobi equation. Unfortunately the solution to this equation is not a distance function. As a consequence, the practical application of the level set method is plagued with such questions as when do we have to "reinitialize" the distance function? How do we "reinitialize" the distance function? Etc... which reveal a disagreement between the theory and its implementation. This paper proposes an alternative to the use of Hamilton-Jacobi equations which eliminates this contradiction: in our method the implicit representation always remains a distance function by construction, and the implementation does not differ from the theory...
Fluid Control Using the Adjoint Method
- ACM TRANS. GRAPH. (SIGGRAPH PROC
, 2004
"... We describe a novel method for controlling physics-based fluid simulations through gradient-based nonlinear optimization. Using a technique known as the adjoint method, derivatives can be computed efficiently, even for large 3D simulations with millions of control parameters. In addition, we introdu ..."
Abstract
-
Cited by 96 (1 self)
- Add to MetaCart
We describe a novel method for controlling physics-based fluid simulations through gradient-based nonlinear optimization. Using a technique known as the adjoint method, derivatives can be computed efficiently, even for large 3D simulations with millions of control parameters. In addition, we introduce the first method for the full control of free-surface liquids. We show how to compute adjoint derivatives through each step of the simulation, including the fast marching algorithm, and describe a new set of control parameters specifically designed for liquids.