Results 1  10
of
159
ATOMIC DECOMPOSITION BY BASIS PURSUIT
, 1995
"... The TimeFrequency and TimeScale communities have recently developed a large number of overcomplete waveform dictionaries  stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for d ..."
Abstract

Cited by 2728 (61 self)
 Add to MetaCart
(Show Context)
The TimeFrequency and TimeScale communities have recently developed a large number of overcomplete waveform dictionaries  stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the Method of Frames (MOF), Matching Pursuit (MP), and, for special dictionaries, the Best Orthogonal Basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l 1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP and BOB, including better sparsity, and superresolution. BP has interesting relations to ideas in areas as diverse as illposed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. Basis Pursuit in highly overcomplete dictionaries leads to largescale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interiorpoint methods. We obtain reasonable success with a primaldual logarithmic barrier method and conjugategradient solver.
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ¹ minimization
 PROC. NATL ACAD. SCI. USA 100 2197–202
, 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract

Cited by 633 (38 self)
 Add to MetaCart
Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered the special case where D is an overcomplete system consisting of exactly two orthobases, and has shown that, under a condition of mutual incoherence of the two bases, and assuming that S has a sufficiently sparse representation, this representation is unique and can be found by solving a convex optimization problem: specifically, minimizing the ℓ¹ norm of the coefficients γ. In this paper, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We introduce the Spark, ameasure of linear dependence in such a system; it is the size of the smallest linearly dependent subset (dk). We show that, when the signal S has a representation using less than Spark(D)/2 nonzeros, this representation is necessarily unique. We
Uncertainty principles and ideal atomic decomposition
 IEEE Transactions on Information Theory
, 2001
"... Suppose a discretetime signal S(t), 0 t<N, is a superposition of atoms taken from a combined time/frequency dictionary made of spike sequences 1ft = g and sinusoids expf2 iwt=N) = p N. Can one recover, from knowledge of S alone, the precise collection of atoms going to make up S? Because every d ..."
Abstract

Cited by 583 (20 self)
 Add to MetaCart
(Show Context)
Suppose a discretetime signal S(t), 0 t<N, is a superposition of atoms taken from a combined time/frequency dictionary made of spike sequences 1ft = g and sinusoids expf2 iwt=N) = p N. Can one recover, from knowledge of S alone, the precise collection of atoms going to make up S? Because every discretetime signal can be represented as a superposition of spikes alone, or as a superposition of sinusoids alone, there is no unique way of writing S as a sum of spikes and sinusoids in general. We prove that if S is representable as a highly sparse superposition of atoms from this time/frequency dictionary, then there is only one such highly sparse representation of S, and it can be obtained by solving the convex optimization problem of minimizing the `1 norm of the coe cients among all decompositions. Here \highly sparse " means that Nt + Nw < p N=2 where Nt is the number of time atoms, Nw is the number of frequency atoms, and N is the length of the discretetime signal.
Stable recovery of sparse overcomplete representations in the presence of noise
 IEEE TRANS. INFORM. THEORY
, 2006
"... Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes t ..."
Abstract

Cited by 460 (22 self)
 Add to MetaCart
(Show Context)
Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes the possibility of stable recovery under a combination of sufficient sparsity and favorable structure of the overcomplete system. Considering an ideal underlying signal that has a sufficiently sparse representation, it is assumed that only a noisy version of it can be observed. Assuming further that the overcomplete system is incoherent, it is shown that the optimally sparse approximation to the noisy data differs from the optimally sparse decomposition of the ideal noiseless signal by at most a constant multiple of the noise level. As this optimalsparsity method requires heavy (combinatorial) computational effort, approximation algorithms are considered. It is shown that similar stability is also available using the basis and the matching pursuit algorithms. Furthermore, it is shown that these methods result in sparse approximation of the noisy data that contains only terms also appearing in the unique sparsest representation of the ideal noiseless sparse signal.
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 427 (36 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Regularization networks and support vector machines
 Advances in Computational Mathematics
, 2000
"... Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization a ..."
Abstract

Cited by 366 (38 self)
 Add to MetaCart
(Show Context)
Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization and Support Vector Machines. We review both formulations in the context of Vapnik’s theory of statistical learning which provides a general foundation for the learning problem, combining functional analysis and statistics. The emphasis is on regression: classification is treated as a special case.
An interiorpoint method for largescale l1regularized logistic regression
 Journal of Machine Learning Research
, 2007
"... Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand ..."
Abstract

Cited by 290 (9 self)
 Add to MetaCart
(Show Context)
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC; medium sized problems, with tens of thousands of features and examples, can be solved in tens of seconds (assuming some sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search step, can solve very large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warmstart techniques, a good approximation of the entire regularization path can be computed much more efficiently than by solving a family of problems independently.
A Rank Minimization Heuristic with Application to Minimum Order System Approximation
, 2001
"... Several problems arising in control system analysis and design, such as reduced order controller synthesis, involve minimizing the rank of a matrix variable subject to linear matrix inequality (LMI) constraints. Except in some special cases, solving this rank minimization probiem (globally) is ve ..."
Abstract

Cited by 274 (10 self)
 Add to MetaCart
Several problems arising in control system analysis and design, such as reduced order controller synthesis, involve minimizing the rank of a matrix variable subject to linear matrix inequality (LMI) constraints. Except in some special cases, solving this rank minimization probiem (globally) is very difficult. One simple and surprisingly effective heuristic, applicable when the matrix variable is symmetric and positive semidefinite, is to minimize its trace in place of its rank. This results in a semidefinite program (SDP) which can be efficiently solved. In this paper we describe a generalization of the trace heuristic that applies to general nonsymmetric, even nonsquare, matrices, and reduces to the trace heuristic when the matrix is positive selinidefinite. The heuristic is to replace the (nonconvex) rank objective with the sum of the singular values of the matrix, which is the dual of the spectral norm. We show that this problem can be reduced to an SDP, hence efficiently solved. To motivate the heuristic, we show that the dual spectral norm is ^ the convex envelope of the rank on the set of matrices with norm less than one. We demonstrate the method on the problem of minimum order system approximation.
Sparse solutions to linear inverse problems with multiple measurement vectors
 IEEE Trans. Signal Processing
, 2005
"... Abstract—We address the problem of finding sparse solutions to an underdetermined system of equations when there are multiple measurement vectors having the same, but unknown, sparsity structure. The single measurement sparse solution problem has been extensively studied in the past. Although known ..."
Abstract

Cited by 272 (22 self)
 Add to MetaCart
(Show Context)
Abstract—We address the problem of finding sparse solutions to an underdetermined system of equations when there are multiple measurement vectors having the same, but unknown, sparsity structure. The single measurement sparse solution problem has been extensively studied in the past. Although known to be NPhard, many single–measurement suboptimal algorithms have been formulated that have found utility in many different applications. Here, we consider in depth the extension of two classes of algorithms–Matching Pursuit (MP) and FOCal Underdetermined System Solver (FOCUSS)–to the multiple measurement case so that they may be used in applications such as neuromagnetic imaging, where multiple measurement vectors are available, and solutions with a common sparsity structure must be computed. Cost functions appropriate to the multiple measurement problem are developed, and algorithms are derived based on their minimization. A simulation study is conducted on a testcase dictionary to show how the utilization of more than one measurement vector improves the performance of the MP and FOCUSS classes of algorithm, and their performances are compared. I.