Results 11  20
of
312
Populationbased incremental learning with memory scheme for changing environments
 in Proc. 2005 Genetic Evol. Comput. Conf., 2005
"... Abstract—In recent years, interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) has grown due to its importance in realworld applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic pro ..."
Abstract

Cited by 65 (31 self)
 Add to MetaCart
(Show Context)
Abstract—In recent years, interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) has grown due to its importance in realworld applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for populationbased incremental learning (PBIL) algorithms, a class of EAs, for DOPs. A PBILspecific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multipopulation, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator, a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multipopulation schemes for PBILs in different dynamic environments. Index Terms—Associative memory scheme, dynamic optimization problems (DOPs), immune systembased genetic algorithm (ISGA), memoryenhanced genetic algorithm, multipopulation scheme, populationbased incremental learning (PBIL), random immigrants.
Modelbased search for combinatorial optimization
, 2001
"... Abstract In this paper we introduce modelbased search as a unifying framework accommodating some recently proposed heuristics for combinatorial optimization such as ant colony optimization, stochastic gradient ascent, crossentropy and estimation of distribution methods. We discuss similarities as ..."
Abstract

Cited by 64 (12 self)
 Add to MetaCart
(Show Context)
Abstract In this paper we introduce modelbased search as a unifying framework accommodating some recently proposed heuristics for combinatorial optimization such as ant colony optimization, stochastic gradient ascent, crossentropy and estimation of distribution methods. We discuss similarities as well as distinctive features of each method, propose some extensions and present a comparative experimental study of these algorithms. 1
Hierarchical BOA Solves Ising Spin Glasses and MAXSAT
 In Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2003), number 2724 in LNCS
, 2003
"... Theoretical and empirical evidence exists that the hierarchical Bayesian optimization algorithm (hBOA) can solve challenging hierarchical problems and anything easier. This paper applies hBOA to two important classes of realworld problems: Ising spinglass systems and maximum satis ability (MAX ..."
Abstract

Cited by 56 (19 self)
 Add to MetaCart
(Show Context)
Theoretical and empirical evidence exists that the hierarchical Bayesian optimization algorithm (hBOA) can solve challenging hierarchical problems and anything easier. This paper applies hBOA to two important classes of realworld problems: Ising spinglass systems and maximum satis ability (MAXSAT). The paper shows how easy it is to apply hBOA to realworld optimization problems. The results indicate that hBOA is capable of solving enormously dicult problems that cannot be solved by other optimizers and still provide competitive or better performance than problemspeci c approaches on other problems. The results thus con rm that hBOA is a practical, robust, and scalable technique for solving challenging realworld problems.
Feature Subset Selection by Bayesian networks: a comparison with genetic and sequential algorithms
"... In this paper we perform a comparison among FSSEBNA, a randomized, populationbased and evolutionary algorithm, and two genetic and other two sequential search approaches in the well known Feature Subset Selection (FSS) problem. In FSSEBNA, the FSS problem, stated as a search problem, uses the E ..."
Abstract

Cited by 54 (13 self)
 Add to MetaCart
In this paper we perform a comparison among FSSEBNA, a randomized, populationbased and evolutionary algorithm, and two genetic and other two sequential search approaches in the well known Feature Subset Selection (FSS) problem. In FSSEBNA, the FSS problem, stated as a search problem, uses the EBNA (Estimation of Bayesian Network Algorithm) search engine, an algorithm within the EDA (Estimation of Distribution Algorithm) approach. The EDA paradigm is born from the roots of the GA community in order to explicitly discover the relationships among the features of the problem and not disrupt them by genetic recombination operators. The EDA paradigm avoids the use of recombination operators and it guarantees the evolution of the population of solutions and the discovery of these relationships by the factorization of the probability distribution of best individuals in each generation of the search. In EBNA, this factorization is carried out by a Bayesian network induced by a chea...
Continuous Iterated Density Estimation Evolutionary Algorithms Within The IDEA Framework
, 2000
"... In this paper, we formalize the notion of performing optimization by iterated density estimation evolutionary algorithms as the IDEA framework. These algorithms build probabilistic models and estimate probability densities based upon a selection of available points. We show how these probabili ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
In this paper, we formalize the notion of performing optimization by iterated density estimation evolutionary algorithms as the IDEA framework. These algorithms build probabilistic models and estimate probability densities based upon a selection of available points. We show how these probabilistic models can be built and used for dierent probability density functions within the IDEA framework. We put the emphasis on techniques for vectors of continuous random variables and thereby introduce new continuous evolutionary optimization algorithms.
Scalability Problems of Simple Genetic Algorithms
 Evolutionary Computation
, 1999
"... Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simpl ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
(Show Context)
Scalable evolutionary computation has become an intensively studied research topic in recent years. The issue of scalability is predominant in any field of algorithmic design, but it became particularly relevant for the design of competent genetic algorithms once the scalability problems of simple genetic algorithms were understood. Here we present some of the work that has aided in getting a clear insight in the scalability problems of simple genetic algorithms. Particularly, we discuss the important issue of building block mixing. We show how the need for mixing places a boundary in the GA parameter space that, together with the boundary from the schema theorem, delimits the region where the GA converges reliably to the optimum in problems of bounded difficulty. This region shrinks rapidly with increasing problem size unless the building blocks are tightly linked in the problem coding structure. In addition, we look at how straightforward extensions of the simple genetic a...
Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence
 PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 275–282. (ALSO ILLIGAL
, 2000
"... This paper analyzes convergence properties of the ..."
Abstract

Cited by 46 (18 self)
 Add to MetaCart
This paper analyzes convergence properties of the
Migration Policies, Selection Pressure, and Parallel Evolutionary Algorithms
"... This paper investigates how the policy used to select migrants and replacements affects the selection pressure in parallel evolutionary algorithms (EAs) with multiple populations. ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
This paper investigates how the policy used to select migrants and replacements affects the selection pressure in parallel evolutionary algorithms (EAs) with multiple populations.
On the convergence of a class of estimation of distribution algorithms, conditionally
 IEEE Trans. Evol. Comput
"... Abstract—We investigate the global convergence of estimation of distribution algorithms (EDAs). In EDAs, the distribution is estimated from a set of selected elements, i.e., the parent set, and then the estimated distribution model is used to generate new elements. In this paper, we prove that: 1) i ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
(Show Context)
Abstract—We investigate the global convergence of estimation of distribution algorithms (EDAs). In EDAs, the distribution is estimated from a set of selected elements, i.e., the parent set, and then the estimated distribution model is used to generate new elements. In this paper, we prove that: 1) if the distribution of the new elements matches that of the parent set exactly, the algorithms will converge to the global optimum under three widely used selection schemes and 2) a factorized distribution algorithm converges globally under proportional selection. Index Terms—Convergence, estimation of distribution algorithms (EDAs), factorized distribution algorithms (FDA). I.
Optimization in continuous domains by learning and simulation of Gaussian networks
"... This paper shows how the Gaussian network paradigm can be used to solve optimization problems in continuous domains. Some methods of structure learning from data and simulation of Gaussian networks are applied in the Estimation of Distribution Algorithm (EDA) as well as new methods based on in ..."
Abstract

Cited by 42 (4 self)
 Add to MetaCart
This paper shows how the Gaussian network paradigm can be used to solve optimization problems in continuous domains. Some methods of structure learning from data and simulation of Gaussian networks are applied in the Estimation of Distribution Algorithm (EDA) as well as new methods based on information theory are proposed. Experimental results are also presented. 1 Estimation of Distribution Algorithms approaches in continuous domains Figure 1 shows a schematic of the EDA approach for continuous domains. We will use x = (x 1 ; : : : ; xn ) to denote individuals, and D l to denote the population of N individuals in the lth generation. Similarly, D Se l will represent the population of the selected Se individuals from D l . In the EDA [9] our interest will be to estimate f(x j D Se ), that is, the joint probability density function over one individual x being among the selected individuals. We denote as f l (x) = f l (x j D Se l 1 ) the joint density of the lth genera...