Results 1 - 10
of
166
Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource
- Nucleic Acids Res
, 2011
"... and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with an ..."
Abstract
-
Cited by 52 (1 self)
- Add to MetaCart
(Show Context)
and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.
From the semantic web to social machines: A research challenge for
- AI on the World Wide Web, Artificial Intelligence
, 2010
"... The advent of social computing on the Web has led to a new generation of Web applications that are powerful and world-changing. However, we argue that we are just at the beginning of this age of "social machines" and that their continued evolution and growth requires the cooperation of We ..."
Abstract
-
Cited by 34 (0 self)
- Add to MetaCart
(Show Context)
The advent of social computing on the Web has led to a new generation of Web applications that are powerful and world-changing. However, we argue that we are just at the beginning of this age of "social machines" and that their continued evolution and growth requires the cooperation of Web and AI researchers. In this paper, we show how the growing Semantic Web provides necessary support for these technologies, outline the challenges we see in bringing the technology to the next level, and propose some starting places for the research. Much has been written about the profound impact that the World Wide Web has had on society. Yet it is primarily in the past few years, as more interactive "read/write" technologies (e.g. Wikis, blogs and photo/video sharing) and social networking sites have proliferated, that the truly profound nature of this change is being felt. From the very beginning, however, the Web was designed to create a network of humans changing society empowered using this shared infrastructure. This aspect of the original vision was explained in the book Weaving the Web [2]: Real life is and must be full of all kinds of social constraint -the very processes from which society arises. Computers can help if we use them to create abstract social machines on the Web: processes in which the people do the creative work and the machine does the administration. . . The stage is set for an evolutionary growth of new social engines. The ability to create new forms of social process would be given to the world at large, and development would be rapid. (pp. 172-175)
A data placement strategy in scientific cloud workflows
- FUTURE GENERATION COMPUTER SYSTEMS
, 2010
"... ..."
(Show Context)
Scientific workflows and clouds
- Crossroads
, 2010
"... Abstract The development of cloud computing has generated significant interest in the scientific computing community. In this chapter we consider the impact of cloud computing on scientific workflow applications. We examine the benefits and drawbacks of cloud computing for workflows, and argue that ..."
Abstract
-
Cited by 20 (1 self)
- Add to MetaCart
(Show Context)
Abstract The development of cloud computing has generated significant interest in the scientific computing community. In this chapter we consider the impact of cloud computing on scientific workflow applications. We examine the benefits and drawbacks of cloud computing for workflows, and argue that the primary benefit of cloud computing is not the economic model it promotes, but rather the technologies it employs and how they enable new features for workflow applications. We describe how clouds can be configured to execute workflow tasks, and present a case study that examines the performance and cost of three typical workflow applications on Amazon EC2. Finally, we identify several areas in which existing clouds can be improved and discuss the future of workflows in the cloud. 1
Scientific Workflows: Business as Usual
- 7th Intl. Conf. on Business Process Management (BPM), LNCS 5701
, 2009
"... Abstract. Business workflow management and business process modeling are mature research areas, whose roots go far back to the early days of office automation systems. Scientific workflow management, on the other hand, is a much more recent phenomenon, triggered by (i) a shift towards data-intensive ..."
Abstract
-
Cited by 18 (1 self)
- Add to MetaCart
(Show Context)
Abstract. Business workflow management and business process modeling are mature research areas, whose roots go far back to the early days of office automation systems. Scientific workflow management, on the other hand, is a much more recent phenomenon, triggered by (i) a shift towards data-intensive and computational methods in the natural sciences, and (ii) the resulting need for tools that can simplify and automate recurring computational tasks. In this paper, we provide an introduction and overview of scientific workflows, highlighting features and important concepts commonly found in scientific workflow applications. We illustrate these using simple workflow examples from a bioinformatics domain. We then discuss similarities and, more importantly, differences between scientific workflows and business workflows. While some concepts and solutions developed in one domain may be readily applicable to the other, there remain sufficiently many differences that warrant a new research effort at the intersection of scientific and business workflows. We close by proposing a number of research opportunities for cross-fertilization between the scientific workflow and business workflow communities. 1
WorkflowSim: A Toolkit for Simulating Scientific Workflows in Distributed Environments
"... Abstract—Simulation is one of the most popular evaluation methods in scientific workflow studies. However, existing workflow simulators fail to provide a framework that takes into consideration heterogeneous system overheads and failures. They also lack the support for widely used workflow optimizat ..."
Abstract
-
Cited by 13 (2 self)
- Add to MetaCart
(Show Context)
Abstract—Simulation is one of the most popular evaluation methods in scientific workflow studies. However, existing workflow simulators fail to provide a framework that takes into consideration heterogeneous system overheads and failures. They also lack the support for widely used workflow optimization techniques such as task clustering. In this paper, we introduce WorkflowSim, which extends the existing CloudSim simulator by providing a higher layer of workflow management. We also indicate that to ignore system overheads and failures in simulating scientific workflows could cause significant inaccuracies in the predicted workflow runtime. To further validate its value in promoting other research work, we introduce two promising research areas for which WorkflowSim provides a unique and effective evaluation platform.
The Impact of Workflow Tools on Data-centric Research
- SCIENTIFIC INFRASTRUCTURE
"... ... in which hypotheses are not only tested through directed data collection and analysis but also generated by combining and mining the pool of data already available [1-3]. The scientific data landscape we draw upon is expanding rapidly in both scale and diversity. Taking the life sciences as an e ..."
Abstract
-
Cited by 13 (4 self)
- Add to MetaCart
(Show Context)
... in which hypotheses are not only tested through directed data collection and analysis but also generated by combining and mining the pool of data already available [1-3]. The scientific data landscape we draw upon is expanding rapidly in both scale and diversity. Taking the life sciences as an example, high-throughput gene sequencing platforms are capable of generating terabytes of data in a single experiment, and data volumes are set to increase further with industrial-scale automation. From 2001 to 2009, the number of databases reported in Nucleic Acids Research jumped from 218 to 1,170 [4]. Not only are the datasets growing in size and number, but they are only partly coordinated and often incompatible [5], which means that discovery and integration tasks are significant challenges. At the same time, we are drawing on a broader array of data sources: modern biology draws insights from combining different types of
Adaptive workflow processing and execution in pegasus
- In 3rd Intl Workshop on Workflow Management and Applications in Grid Environments (WaGe08), in Proc. 3rd Intl. Conf. on Grid and Pervasive Computing Symposia/Workshops
, 2008
"... Workflows are widely used in applications that require coordinated use of computational resources. Workflow definition languages typically abstract over some aspects of the way in which a workflow is to be executed, such as the level of parallelism to be used or the physical resources to be deployed ..."
Abstract
-
Cited by 12 (3 self)
- Add to MetaCart
Workflows are widely used in applications that require coordinated use of computational resources. Workflow definition languages typically abstract over some aspects of the way in which a workflow is to be executed, such as the level of parallelism to be used or the physical resources to be deployed. As a result, a workflow management system has responsibility for establishing how best to execute a workflow given the available resources. The Pegasus workflow management system compiles abstract workflows into concrete execution plans, and has been widely used in large-scale e-Science applications. This paper describes an extension to Pegasus whereby resource allocation decisions are revised during workflow evaluation, in the light of feedback on the performance of jobs at runtime. The contributions of this paper include: (i) a description of how adaptive processing has been retrofitted to an existing workflow management system; (ii) a scheduling algorithm that allocates resources based on runtime performance; and (iii) an experimental evaluation of the resulting infrastructure using grid middleware over clusters. 1
Pipeline-Centric Provenance Model
"... In this paper we propose a new provenance model which is tailored to a class of workflow-based applications. We motivate the approach with use cases from the astronomy community. We generalize the class of applications the approach is relevant to and propose a pipeline-centric provenance model. Fina ..."
Abstract
-
Cited by 11 (3 self)
- Add to MetaCart
(Show Context)
In this paper we propose a new provenance model which is tailored to a class of workflow-based applications. We motivate the approach with use cases from the astronomy community. We generalize the class of applications the approach is relevant to and propose a pipeline-centric provenance model. Finally, we evaluate the benefits in terms of storage needed by the approach when applied to an astronomy application.
Cloud Programming Paradigms for Technical Computing Applications
- in Cloud Futures Workshop
, 2012
"... In the past four years cloud computing has emerged as an alternative platform for high performance computing. Unfortunately, there is still confusion about the cloud model and its advantages and disadvantages over tradition supercomputing based problem solving methods. In this note we characterize t ..."
Abstract
-
Cited by 10 (3 self)
- Add to MetaCart
In the past four years cloud computing has emerged as an alternative platform for high performance computing. Unfortunately, there is still confusion about the cloud model and its advantages and disadvantages over tradition supercomputing based problem solving methods. In this note we characterize the ways in which cloud computing can be used productively in scientific and technical applications. As we shall see there is a large set of application that can run on a cloud and a supercomputer equally well. There are also applications that are better suited to the cloud and there are applications where a cloud is a very poor replacement for a supercomputer. Our goal is to illustrate where cloud computing can complement the capabilities of a contemporary massively parallel supercomputer. Defining the Cloud. It would not be a huge exaggeration to say that the number of different definitions of cloud computing greatly exceeds the number of actual physical realizations of the key concepts. Consequently, if we wish to provide a characterization of what works “in the cloud”, we need a grounding definitions and we shall start with one that most accurately describes the commercial public clouds from Microsoft, Amazon and Google. These public clouds consist of one or more large data centers with the following architectural characteristics 1. The data center is composed of containers of racks of basic servers. The total number of servers in one