Results 1 - 10
of
1,757
Agnostic active learning
- In ICML
, 2006
"... We state and analyze the first active learning algorithm which works in the presence of arbitrary forms of noise. The algorithm, A2 (for Agnostic Active), relies only upon the assumption that the samples are drawn i.i.d. from a fixed distribution. We show that A2 achieves an exponential improvement ..."
Abstract
-
Cited by 190 (15 self)
- Add to MetaCart
We state and analyze the first active learning algorithm which works in the presence of arbitrary forms of noise. The algorithm, A2 (for Agnostic Active), relies only upon the assumption that the samples are drawn i.i.d. from a fixed distribution. We show that A2 achieves an exponential improvement (i.e., requires only O � ln 1 ɛ samples to find an ɛ-optimal classifier) over the usual sample complexity of supervised learning, for several settings considered before in the realizable case. These include learning threshold classifiers and learning homogeneous linear separators with respect to an input distribution which is uniform over the unit sphere. 1.
Classifier Chains for Multi-label Classification
"... Abstract. The widely known binary relevance method for multi-label classification, which considers each label as an independent binary problem, has been sidelined in the literature due to the perceived inadequacy of its label-independence assumption. Instead, most current methods invest considerable ..."
Abstract
-
Cited by 162 (13 self)
- Add to MetaCart
Abstract. The widely known binary relevance method for multi-label classification, which considers each label as an independent binary problem, has been sidelined in the literature due to the perceived inadequacy of its label-independence assumption. Instead, most current methods invest considerable complexity to model interdependencies between labels. This paper shows that binary relevance-based methods have much to offer, especially in terms of scalability to large datasets. We exemplify this with a novel chaining method that can model label correlations while maintaining acceptable computational complexity. Empirical evaluation over a broad range of multi-label datasets with a variety of evaluation metrics demonstrates the competitiveness of our chaining method against related and state-of-the-art methods, both in terms of predictive performance and time complexity. 1
Schism: a Workload-Driven Approach to Database Replication and Partitioning
"... We present Schism, a novel workload-aware approach for database partitioning and replication designed to improve scalability of sharednothing distributed databases. Because distributed transactions are expensive in OLTP settings (a fact we demonstrate through a series of experiments), our partitione ..."
Abstract
-
Cited by 97 (7 self)
- Add to MetaCart
(Show Context)
We present Schism, a novel workload-aware approach for database partitioning and replication designed to improve scalability of sharednothing distributed databases. Because distributed transactions are expensive in OLTP settings (a fact we demonstrate through a series of experiments), our partitioner attempts to minimize the number of distributed transactions, while producing balanced partitions. Schism consists of two phases: i) a workload-driven, graph-based replication/partitioning phase and ii) an explanation and validation phase. The first phase creates a graph with a node per tuple (or group of tuples) and edges between nodes accessed by the same transaction, and then uses a graph partitioner to split the graph into k balanced partitions that minimize the number of cross-partition transactions. The second phase exploits machine learning techniques to find a predicate-based explanation of the partitioning strategy (i.e., a set of range predicates that represent the same replication/partitioning scheme produced by the partitioner). The strengths of Schism are: i) independence from the schema layout, ii) effectiveness on n-to-n relations, typical in social network databases, iii) a unified and fine-grained approach to replication and partitioning. We implemented and tested a prototype of Schism on a wide spectrum of test cases, ranging from classical OLTP workloads (e.g., TPC-C and TPC-E), to more complex scenarios derived from social network websites (e.g., Epinions.com), whose schema contains multiple n-to-n relationships, which are known to be hard to partition. Schism consistently outperforms simple partitioning schemes, and in some cases proves superior to the best known manual partitioning, reducing the cost of distributed transactions up to 30%. 1.
Discriminating Gender on Twitter
"... Accurate prediction of demographic attributes from social media and other informal online content is valuable for marketing, personalization, and legal investigation. This paper describes the construction of a large, multilingual dataset labeled with gender, and investigates statistical models for d ..."
Abstract
-
Cited by 64 (0 self)
- Add to MetaCart
(Show Context)
Accurate prediction of demographic attributes from social media and other informal online content is valuable for marketing, personalization, and legal investigation. This paper describes the construction of a large, multilingual dataset labeled with gender, and investigates statistical models for determining the gender of uncharacterized Twitter users. We explore several different classifier types on this dataset. We show the degree to which classifier accuracy varies based on tweet volumes as well as when various kinds of profile metadata are included in the models. We also perform a large-scale human assessment using Amazon Mechanical Turk. Our methods significantly out-perform both baseline models and almost all humans on the same task. 1
Sentiment Knowledge Discovery in Twitter Streaming Data
"... Abstract. Micro-blogs are a challenging new source of information for data mining techniques. Twitter is a micro-blogging service built to discover what is happening at any moment in time, anywhere in the world. Twitter messages are short, and generated constantly, and well suited for knowledge disc ..."
Abstract
-
Cited by 62 (3 self)
- Add to MetaCart
(Show Context)
Abstract. Micro-blogs are a challenging new source of information for data mining techniques. Twitter is a micro-blogging service built to discover what is happening at any moment in time, anywhere in the world. Twitter messages are short, and generated constantly, and well suited for knowledge discovery using data stream mining. We briefly discuss the challenges that Twitter data streams pose, focusing on classification problems, and then consider these streams for opinion mining and sentiment analysis. To deal with streaming unbalanced classes, we propose a sliding window Kappa statistic for evaluation in time-changing data streams. Using this statistic we perform a study on Twitter data using learning algorithms for data streams. 1
Prophiler: A fast filter for the large-scale detection of malicious web pages
, 2010
"... Malicious web pages that host drive-by-download exploits have become a popular means for compromising hosts on the Internet and, subsequently, for creating large-scale botnets. In a drive-bydownload exploit, an attacker embeds a malicious script (typically written in JavaScript) into a web page. Whe ..."
Abstract
-
Cited by 49 (4 self)
- Add to MetaCart
(Show Context)
Malicious web pages that host drive-by-download exploits have become a popular means for compromising hosts on the Internet and, subsequently, for creating large-scale botnets. In a drive-bydownload exploit, an attacker embeds a malicious script (typically written in JavaScript) into a web page. When a victim visits this page, the script is executed and attempts to compromise the browser or one of its plugins. To detect drive-by-download exploits, researchers have developed a number of systems that analyze web pages for the presence of malicious code. Most of these systems use dynamic analysis. That is, they run the scripts associated with a web page either directly in a real browser (running in a virtualized environment) or in an emulated browser, and they monitor the scripts ’ executions for malicious activity. While the tools are quite precise, the analysis process is costly, often requiring in the order of
What’s in a Hashtag? Content based Prediction of the Spread of Ideas in Microblogging Communities
"... Current social media research mainly focuses on temporal trends of the information flow and on the topology of the social graph that facilitates the propagation of information. In this paper we study the effect of the content of the idea on the information propagation. We present an efficient hybrid ..."
Abstract
-
Cited by 43 (1 self)
- Add to MetaCart
(Show Context)
Current social media research mainly focuses on temporal trends of the information flow and on the topology of the social graph that facilitates the propagation of information. In this paper we study the effect of the content of the idea on the information propagation. We present an efficient hybrid approach based on a linear regression for predicting the spread of an idea in a given time frame. We show that a combination of content features with temporal and topological features minimizes prediction error. Our algorithm is evaluated on Twitter hashtags extracted from a dataset of more than 400 million tweets. We analyze the contribution and the limitations of the various feature types to the spread of information, demonstrating that content aspects can be used as strong predictors thus should not be disregarded. We also study the dependencies between global features such as graph topology and content features.
Open Information Extraction: The Second Generation
- PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 2011
"... How do we scale information extraction to the massive size and unprecedented heterogeneity of the Web corpus? Beginning in 2003, our KnowItAll project has sought to extract high-quality knowledge from the Web. In 2007, we introduced the Open Information Extraction (Open IE) paradigm which eschews ha ..."
Abstract
-
Cited by 41 (0 self)
- Add to MetaCart
How do we scale information extraction to the massive size and unprecedented heterogeneity of the Web corpus? Beginning in 2003, our KnowItAll project has sought to extract high-quality knowledge from the Web. In 2007, we introduced the Open Information Extraction (Open IE) paradigm which eschews handlabeled training examples, and avoids domainspecific verbs and nouns, to develop unlexicalized, domain-independent extractors that scale to the Web corpus. Open IE systems have extracted billions of assertions as the basis for both commonsense knowledge and novel question-answering systems. This paper describes the second generation of Open IE systems, which rely on a novel model of how relations and their arguments are expressed in English sentences to double precision/recall compared with previous systems such as TEXTRUNNER and WOE.
A Review on Multi-Label Learning Algorithms
"... Multi-label learning studies the problem where each example is represented by a single instance while associated with a set of labels simultaneously. During the past decade, significant amount of progresses have been made towards this emerging machine learning paradigm. This paper aims to provide a ..."
Abstract
-
Cited by 41 (7 self)
- Add to MetaCart
Multi-label learning studies the problem where each example is represented by a single instance while associated with a set of labels simultaneously. During the past decade, significant amount of progresses have been made towards this emerging machine learning paradigm. This paper aims to provide a timely review on this area with emphasis on state-of-the-art multi-label learning algorithms. Firstly, fundamentals on multi-label learning including formal definition and evaluation metrics are given. Secondly and primarily, eight representative multi-label learning algorithms are scrutinized under common notations with relevant analyses and discussions. Thirdly, several related learning settings are briefly summarized. As a conclusion, online resources and open research problems on multi-label learning are outlined for reference purposes.
Nanoparticles – a review
- Trop J Pharm Res
"... Apoptotic cell: linkage of inflammation and wound healing ..."
Abstract
-
Cited by 39 (1 self)
- Add to MetaCart
(Show Context)
Apoptotic cell: linkage of inflammation and wound healing