Results 1 - 10
of
534
Ariadne: a secure on-demand routing protocol for ad hoc networks," in
- Proc. 8th ACM International Conf. Mobile Computing Networking ,
, 2002
"... Abstract An ad hoc network is a group of wireless mobile computers (or nodes), in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range. Prior research in ad hoc networking has generally studied the routing prob ..."
Abstract
-
Cited by 925 (12 self)
- Add to MetaCart
Abstract An ad hoc network is a group of wireless mobile computers (or nodes), in which individual nodes cooperate by forwarding packets for each other to allow nodes to communicate beyond direct wireless transmission range. Prior research in ad hoc networking has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we present attacks against routing in ad hoc networks, and we present the design and performance evaluation of a new secure on-demand ad hoc network routing protocol, called Ariadne. Ariadne prevents attackers or compromised nodes from tampering with uncompromised routes consisting of uncompromised nodes, and also prevents many types of Denial-of-Service attacks. In addition, Ariadne is efficient, using only highly efficient symmetric cryptographic primitives.
Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures
-
, 2003
"... We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as agq1( We propose securitygcur forrouting in sensor networks, show how attacks agacks ad-hoc and peer-to-peer networks can be ..."
Abstract
-
Cited by 827 (3 self)
- Add to MetaCart
We consider routing security in wireless sensor networks. Many sensor network routing protocols have been proposed, but none of them have been designed with security as agq1( We propose securitygcur forrouting in sensor networks, show how attacks agacks ad-hoc and peer-to-peer networks can be adapted into powerful attacks agacks sensor networks, introduce two classes of novel attacks agacks sensor networks----sinkholes and HELLO floods, and analyze the security of all the major sensor networkrouting protocols. We describe crippling attacks against all of them and sug@(5 countermeasures anddesig considerations. This is the first such analysis of secure routing in sensor networks.
Mobile ad hoc networking: imperatives and challenges
, 2003
"... Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-exi ..."
Abstract
-
Cited by 317 (8 self)
- Add to MetaCart
Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET's characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future.
An on-demand secure routing protocol resilient to byzantine failures
- in ACM Workshop on Wireless Security (WiSe
, 2002
"... An ad hoc wireless network is an autonomous self-organizing system of mobile nodes connected by wireless links where nodes not in direct range can communicate via intermediate nodes. A common technique used in routing protocols for ad hoc wireless networks is to establish the routing paths ondemand, ..."
Abstract
-
Cited by 218 (13 self)
- Add to MetaCart
(Show Context)
An ad hoc wireless network is an autonomous self-organizing system of mobile nodes connected by wireless links where nodes not in direct range can communicate via intermediate nodes. A common technique used in routing protocols for ad hoc wireless networks is to establish the routing paths ondemand, as opposed to continually maintaining a complete routing table. A significant concern in routing is the ability to function in the presence of byzantine failures which include nodes that drop, modify, or mis-route packets in an attempt to disrupt the routing service. We propose an on-demand routing protocol for ad hoc wireless networks that provides resilience to byzantine failures caused by individual or colluding nodes. Our adaptive probing technique detects a malicious link after log n faults have occurred, where n is the length of the path. These links are then avoided by multiplicatively increasing their weights and by using an on-demand route discovery protocol that finds a least weight path to the destination.
Rushing Attacks and Defense in Wireless Ad Hoc Network Routing Protocols
- in ACM Workshop on Wireless Security (WiSe
, 2003
"... In an ad hoc network, mobile computers (or nodes) cooperate to forward packets for each other, allowing nodes to communicate beyond their direct wireless transmission range. Many proposed routing protocols for ad hoc networks operate in an on-demand fashion, as on-demand routing protocols have been ..."
Abstract
-
Cited by 216 (4 self)
- Add to MetaCart
In an ad hoc network, mobile computers (or nodes) cooperate to forward packets for each other, allowing nodes to communicate beyond their direct wireless transmission range. Many proposed routing protocols for ad hoc networks operate in an on-demand fashion, as on-demand routing protocols have been shown to often have lower overhead and faster reaction time than other types of routing based on periodic (proactive) mechanisms. Significant attention recently has been devoted to developing secure routing protocols for ad hoc networks, including a number of secure ondemand routing protocols, that defend against a variety of possible attacks on network routing. In this paper, we present the rushing attack, a new attack that results in denial-of-service when used against all previous on-demand ad hoc network routing protocols. For example, DSR, AODV, and secure protocols based on them, such as Ariadne, ARAN, and SAODV, are unable to discover routes longer than two hops when subject to this attack. This attack is also particularly damaging because it can be performed by a relatively weak attacker. We analyze why previous protocols fail under this attack. We then develop Rushing Attack Prevention (RAP),a generic defense against the rushing attack for on-demand protocols. RAP incurs no cost unless the underlying protocol fails to find a working route, and it provides provable security properties even against the strongest rushing attackers.
Using Directional Antennas to Prevent Wormhole Attacks
, 2004
"... Wormhole attacks enable an attacker with limited resources and no cryptographic material to wreak havoc on wireless networks. To date, no general defenses against wormhole attacks have been proposed. This paper presents an analysis of wormhole attacks and proposes a countermeasure using directional ..."
Abstract
-
Cited by 191 (1 self)
- Add to MetaCart
Wormhole attacks enable an attacker with limited resources and no cryptographic material to wreak havoc on wireless networks. To date, no general defenses against wormhole attacks have been proposed. This paper presents an analysis of wormhole attacks and proposes a countermeasure using directional antennas. We present a cooperative protocol whereby nodes share directional information to prevent wormhole endpoints from masquerading as false neighbors. Our defense greatly diminishes the threat of wormhole attacks and requires no location information or clock synchronization.
SECTOR: secure tracking of node encounters in multi-hop wireless networks
- In ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN
, 2003
"... In this paper we present SECTOR, a set of mechanisms for the secure verification of the time of encounters between nodes in multi-hop wireless networks. This information can be used notably to prevent wormhole attacks (without requiring any clock synchronization), to secure routing protocols based o ..."
Abstract
-
Cited by 162 (22 self)
- Add to MetaCart
In this paper we present SECTOR, a set of mechanisms for the secure verification of the time of encounters between nodes in multi-hop wireless networks. This information can be used notably to prevent wormhole attacks (without requiring any clock synchronization), to secure routing protocols based on last encounters (with only loose clock synchronization) , and to control the topology of the network. SECTOR is based primarily on distance-bounding techniques, on one-way hash chains and on Merkle hash trees. We analyze the communication, computation and storage complexity of the proposed mechanisms and we show that, due to their efficiency and simplicity, they are compliant with the limited resources of most mobile devices.
SeRLoc: Secure Range-Independent Localization for Wireless Sensor Networks
- in Proceedings of WiSe
, 2004
"... In many applications of wireless sensor networks (WSN), sensors are deployed un-tethered in hostile environments. For locationaware WSN applications, it is essential to ensure that sensors can determine their location, even in the presence of malicious adversaries. In this paper we address the probl ..."
Abstract
-
Cited by 146 (5 self)
- Add to MetaCart
(Show Context)
In many applications of wireless sensor networks (WSN), sensors are deployed un-tethered in hostile environments. For locationaware WSN applications, it is essential to ensure that sensors can determine their location, even in the presence of malicious adversaries. In this paper we address the problem of enabling sensors of WSN to determine their location in an un-trusted environment. Since localization schemes based on distance estimation are expensive for the resource constrained sensors, we propose a rangeindependent localization algorithm called SeRLoc. SeRLoc is distributed algorithm and does not require any communication among sensors. In addition, we show that SeRLoc is robust against severe WSN attacks, such as the wormhole attack, the sybil attack and compromised sensors. To the best of our knowledge, ours is the first work that provides a security-aware range-independent localization scheme for WSN. We present a threat analysis and comparison of the performance of SeRLoc with state-of-the-art range-independent localization schemes.
Security in Mobile Ad Hoc Networks: Challenges and Solutions
, 2004
"... Security has become a primary concern to provide protected communication between mobile nodes in a hostile environment. Unlike wireline networks, the unique characteristics of mobile ad hoc networks pose a number of non-trivial challenges to the security design. ..."
Abstract
-
Cited by 136 (0 self)
- Add to MetaCart
Security has become a primary concern to provide protected communication between mobile nodes in a hostile environment. Unlike wireline networks, the unique characteristics of mobile ad hoc networks pose a number of non-trivial challenges to the security design.
SPV: Secure Path Vector Routing for Securing BGP
, 2004
"... As our economy and critical infrastructure increasingly relies on the Internet, the insecurity of the underlying border gateway routing protocol (BGP) stands out as the Achilles heel. Recent misconfigurations and attacks have demonstrated the brittleness of BGP. Securing BGP has become a priority. I ..."
Abstract
-
Cited by 124 (8 self)
- Add to MetaCart
As our economy and critical infrastructure increasingly relies on the Internet, the insecurity of the underlying border gateway routing protocol (BGP) stands out as the Achilles heel. Recent misconfigurations and attacks have demonstrated the brittleness of BGP. Securing BGP has become a priority. In this paper, we focus on a viable deployment path to secure BGP. We analyze security requirements, and consider tradeoffs of mechanisms that achieve the requirements. In particular, we study how to secure BGP update messages against attacks. We design an efficient cryptographic mechanism that relies only on symmetric cryptographic primitives to guard an ASPATH from alteration, and propose the Secure Path Vector (SPV) protocol. In contrast to the previously proposed S-BGP protocol, SPV is around 22 times faster. With the current effort to secure BGP, we anticipate that SPV will contribute several alternative mechanisms to secure BGP, especially for the case of incremental deployments.