Results 1  10
of
524
Robust principal component analysis?
 Journal of the ACM,
, 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the ..."
Abstract

Cited by 569 (26 self)
 Add to MetaCart
(Show Context)
Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
A firstorder primaldual algorithm for convex problems with applications to imaging
, 2010
"... In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper ..."
Abstract

Cited by 436 (20 self)
 Add to MetaCart
(Show Context)
In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper. We further show accelerations of the proposed algorithm to yield optimal rates on easier problems. In particular we show that we can achieve O(1/N 2) convergence on problems, where the primal or the dual objective is uniformly convex, and we can show linear convergence, i.e. O(1/e N) on problems where both are uniformly convex. The wide applicability of the proposed algorithm is demonstrated on several imaging problems such as image denoising, image deconvolution, image inpainting, motion estimation and image segmentation. 1
Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2008
"... We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added ℓ1norm penalty term. The problem as formulated is convex but the memor ..."
Abstract

Cited by 334 (2 self)
 Add to MetaCart
We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added ℓ1norm penalty term. The problem as formulated is convex but the memory requirements and complexity of existing interior point methods are prohibitive for problems with more than tens of nodes. We present two new algorithms for solving problems with at least a thousand nodes in the Gaussian case. Our first algorithm uses block coordinate descent, and can be interpreted as recursive ℓ1norm penalized regression. Our second algorithm, based on Nesterov’s first order method, yields a complexity estimate with a better dependence on problem size than existing interior point methods. Using a log determinant relaxation of the log partition function (Wainwright and Jordan, 2006), we show that these same algorithms can be used to solve an approximate sparse maximum likelihood problem for the binary case. We test our algorithms on synthetic data, as well as on gene expression and senate voting records data.
Faster and simpler algorithms for multicommodity flow and other fractional packing problems
"... This paper considers the problem of designing fast, approximate, combinatorial algorithms for multicommodity flows and other fractional packing problems. We present new faster and much simpler algorithms for these problems. ..."
Abstract

Cited by 325 (5 self)
 Add to MetaCart
This paper considers the problem of designing fast, approximate, combinatorial algorithms for multicommodity flows and other fractional packing problems. We present new faster and much simpler algorithms for these problems.
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
, 2010
"... Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common s ..."
Abstract

Cited by 311 (3 self)
 Add to MetaCart
(Show Context)
Stochastic subgradient methods are widely used, well analyzed, and constitute effective tools for optimization and online learning. Stochastic gradient methods ’ popularity and appeal are largely due to their simplicity, as they largely follow predetermined procedural schemes. However, most common subgradient approaches are oblivious to the characteristics of the data being observed. We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradientbased learning. The adaptation, in essence, allows us to find needles in haystacks in the form of very predictive but rarely seenfeatures. Ourparadigmstemsfromrecentadvancesinstochasticoptimizationandonlinelearning which employ proximal functions to control the gradient steps of the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal function that can be chosen in hindsight. In a companion paper, we validate experimentally our theoretical analysis and show that the adaptive subgradient approach outperforms stateoftheart, but nonadaptive, subgradient algorithms. 1
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
, 2009
"... ..."
(Show Context)
NESTA: A Fast and Accurate FirstOrder Method for Sparse Recovery
, 2009
"... Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder ..."
Abstract

Cited by 171 (2 self)
 Add to MetaCart
Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder methods in convex optimization, most notably Nesterov’s smoothing technique, this paper introduces a fast and accurate algorithm for solving common recovery problems in signal processing. In the spirit of Nesterov’s work, one of the key ideas of this algorithm is a subtle averaging of sequences of iterates, which has been shown to improve the convergence properties of standard gradientdescent algorithms. This paper demonstrates that this approach is ideally suited for solving largescale compressed sensing reconstruction problems as 1) it is computationally efficient, 2) it is accurate and returns solutions with several correct digits, 3) it is flexible and amenable to many kinds of reconstruction problems, and 4) it is robust in the sense that its excellent performance across a wide range of problems does not depend on the fine tuning of several parameters. Comprehensive numerical experiments on realistic signals exhibiting a large dynamic range show that this algorithm compares favorably with recently proposed stateoftheart methods. We also apply the algorithm to solve other problems for which there are fewer alternatives, such as totalvariation minimization, and
Robust principal component analysis: Exact recovery of corrupted lowrank matrices via convex optimization
 Advances in Neural Information Processing Systems 22
, 2009
"... The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex prog ..."
Abstract

Cited by 149 (4 self)
 Add to MetaCart
(Show Context)
The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex programming relaxation has been developed by Emmanuel Candes of Stanford University. That analysis is reported in a joint paper, Robust Principal Component Analysis? by Emmanuel Candes, Xiaodong Li, Yi Ma and John Wright,