Results 1  10
of
142
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1211 (13 self)
 Add to MetaCart
(Show Context)
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
The primaldual method for approximation algorithms and its application to network design problems.
, 1997
"... Abstract In this survey, we give an overview of a technique used to design and analyze algorithms that provide approximate solutions to N P hard problems in combinatorial optimization. Because of parallels with the primaldual method commonly used in combinatorial optimization, we call it the prim ..."
Abstract

Cited by 137 (5 self)
 Add to MetaCart
Abstract In this survey, we give an overview of a technique used to design and analyze algorithms that provide approximate solutions to N P hard problems in combinatorial optimization. Because of parallels with the primaldual method commonly used in combinatorial optimization, we call it the primaldual method for approximation algorithms. We show how this technique can be used to derive approximation algorithms for a number of different problems, including network design problems, feedback vertex set problems, and facility location problems.
Semidefinite Programming and Combinatorial Optimization
 DOC. MATH. J. DMV
, 1998
"... We describe a few applications of semide nite programming in combinatorial optimization. ..."
Abstract

Cited by 106 (1 self)
 Add to MetaCart
We describe a few applications of semide nite programming in combinatorial optimization.
Selecting Stars: The k Most Representative Skyline Operator
 In Proc. of the Int. IEEE Conf. on Data Engineering (ICDE
, 2007
"... Skyline computation has many applications including multicriteria decision making. In this paper, we study the problem of selecting k skyline points so that the number of points, which are dominated by at least one of these k skyline points, is maximized. We first present an efficient dynamic progr ..."
Abstract

Cited by 93 (3 self)
 Add to MetaCart
(Show Context)
Skyline computation has many applications including multicriteria decision making. In this paper, we study the problem of selecting k skyline points so that the number of points, which are dominated by at least one of these k skyline points, is maximized. We first present an efficient dynamic programming based exact algorithm in a 2dspace. Then, we show that the problem is NPhard when the dimensionality is 3 or more and it can be approximately solved by a polynomial time algorithm with the guaranteed approximation ratio 1 âˆ’ 1 e. To speedup the computation, an efficient, scalable, indexbased randomized algorithm is developed by applying the FM probabilistic counting technique. A comprehensive performance evaluation demonstrates that our randomized technique is very efficient, highly accurate, and scalable. 1.
NonApproximability Results for Optimization Problems on Bounded Degree Instances
, 2001
"... We prove some nonapproximability results for restrictions of basic combinatorial optimization problems to instances of bounded \degree" or bounded \width." Speci cally: We prove that the Max 3SAT problem on instances where each variable occurs in at most B clauses, is hard to approxima ..."
Abstract

Cited by 90 (4 self)
 Add to MetaCart
We prove some nonapproximability results for restrictions of basic combinatorial optimization problems to instances of bounded \degree" or bounded \width." Speci cally: We prove that the Max 3SAT problem on instances where each variable occurs in at most B clauses, is hard to approximate to within a factor 7=8+O(1= B), unless RP = NP . Hastad [18] proved that the problem is approximable to within a factor 7=8+1=64B in polynomial time, and that is hard to approximate to within a factor 7=8 + 1=(log B) 3 . Our result uses a new randomized reduction from general instances of Max 3SAT to boundedoccurrences instances. The randomized reduction applies to other Max SNP problems as well.
Feedback set problems
 HANDBOOK OF COMBINATORIAL OPTIMIZATION
, 1999
"... ABSTRACT. This paper is a short survey of feedback set problems. It will be published in ..."
Abstract

Cited by 56 (1 self)
 Add to MetaCart
(Show Context)
ABSTRACT. This paper is a short survey of feedback set problems. It will be published in
Computational Experience with Approximation Algorithms for the Set Covering Problem
, 1994
"... The Set Covering problem (SCP) is a well known combinatorial optimization problem, which is NPhard. We conducted a comparative study of eight different approximation algorithms for the SCP, including several greedy variants, fractional relaxations, randomized algorithms and a neural network algorit ..."
Abstract

Cited by 50 (2 self)
 Add to MetaCart
The Set Covering problem (SCP) is a well known combinatorial optimization problem, which is NPhard. We conducted a comparative study of eight different approximation algorithms for the SCP, including several greedy variants, fractional relaxations, randomized algorithms and a neural network algorithm. The algorithms were tested on a set of randomgenerated problems with up to 500 rows and 5000 columns, and on two sets of problems originating in combinatorial questions with up to 28160 rows and 11264 columns. On the random problems and on one set of combinatorial problems, the best algorithm among those we tested was the neural network algorithm, with greedy variants very close in second and third place. On the other set of combinatorial problems, the best algorithm was a greedy variant and the neural network performed quite poorly. The other algorithms we tested were always inferior to the ones mentioned above. Theoretical Division and CNLS, MS B213 Los Alamos National Lab, Los Ala...