Results 1  10
of
152
Pictorial Structures for Object Recognition
 IJCV
, 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract

Cited by 816 (15 self)
 Add to MetaCart
(Show Context)
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by springlike connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. We use these models to address the problem of detecting an object in an image as well as the problem of learning an object model from training examples, and present efficient algorithms for both these problems. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate the corresponding objects in novel images.
Recognition of Shapes by Editing Their Shock Graphs
, 2004
"... This paper presents a novel framework for the recognition of objects based on their silhouettes. The main idea is to measure the distance between two shapes as the minimum extent of deformation necessary for one shape to match the other. Since the space of deformations is very highdimensional, thr ..."
Abstract

Cited by 204 (8 self)
 Add to MetaCart
(Show Context)
This paper presents a novel framework for the recognition of objects based on their silhouettes. The main idea is to measure the distance between two shapes as the minimum extent of deformation necessary for one shape to match the other. Since the space of deformations is very highdimensional, three steps are taken to make the search practical: 1) define an equivalence class for shapes based on shockgraph topology, 2) define an equivalence class for deformation paths based on shockgraph transitions, and 3) avoid complexityincreasing deformation paths by moving toward shockgraph degeneracy. Despite these steps, which tremendously reduce the search requirement, there still remain numerous deformation paths to consider. To that end, we employ an editdistance algorithm for shock graphs that finds the optimal deformation path in polynomial time. The proposed approach gives intuitive correspondences for a variety of shapes and is robust in the presence of a wide range of visual transformations. The recognition rates on two distinct databases of 99 and 216 shapes each indicate highly successful within category matches (100 percent in top three matches), which render the framework potentially usable in a range of shapebased recognition applications.
On aligning curves
 IEEE TPAMI
, 2003
"... We present a novel approach to finding a correspondence (alignment) between two curves. The correspondence is based on a notion of an alignment curve which treats both curves symmetrically. We then define a similarity metric based on the alignment curve using two intrinsic properties of the curve, ..."
Abstract

Cited by 133 (4 self)
 Add to MetaCart
We present a novel approach to finding a correspondence (alignment) between two curves. The correspondence is based on a notion of an alignment curve which treats both curves symmetrically. We then define a similarity metric based on the alignment curve using two intrinsic properties of the curve, namely, length and curvature. The optimal correspondence is found by an efficient dynamicprogramming method both for aligning pairs of curve segments and pairs of closed curves, and is effective in the presence of a variety of transformations of the curve. Finally, the correspondence is shown in application to handwritten character recognition, prototype formation, and object recognition, and is potentially useful in other applications such as registration and tracking.
3D Object modeling and recognition using local affineinvariant image descriptors and multiview spatial constraints
 International Journal of Computer Vision
, 2006
"... Abstract. This article introduces a novel representation for threedimensional (3D) objects in terms of local affineinvariant descriptors of their images and the spatial relationships between the corresponding surface patches. Geometric constraints associated with different views of the same patche ..."
Abstract

Cited by 118 (14 self)
 Add to MetaCart
(Show Context)
Abstract. This article introduces a novel representation for threedimensional (3D) objects in terms of local affineinvariant descriptors of their images and the spatial relationships between the corresponding surface patches. Geometric constraints associated with different views of the same patches under affine projection are combined with a normalized representation of their appearance to guide matching and reconstruction, allowing the acquisition of true 3D affine and Euclidean models from multiple unregistered images, as well as their recognition in photographs taken from arbitrary viewpoints. The proposed approach does not require a separate segmentation stage, and it is applicable to highly cluttered scenes. Modeling and recognition results are presented.
Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex
 Neural Computation
, 1995
"... this paper, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the Minimum Description Length (MDL) principle. The model dynamically combines inputdriven bottomup signals with expec ..."
Abstract

Cited by 113 (20 self)
 Add to MetaCart
this paper, we describe a hierarchical network model of visual recognition that explains these experimental observations by using a form of the extended Kalman filter as given by the Minimum Description Length (MDL) principle. The model dynamically combines inputdriven bottomup signals with expectationdriven topdown signals to predict current recognition state. Synaptic weights in the model are adapted in a Hebbian manner according to a learning rule also derived from the MDL principle. The resulting prediction/learning scheme can be viewed as implementing a form of the ExpectationMaximization (EM) algorithm. The architecture of the model posits an active computational role for the reciprocal connections between adjoining visual cortical areas in determining neural response properties. In particular, the model demonstrates the possible role of feedback from higher cortical areas in mediating neurophysiological effects due to stimuli from beyond the classical receptive field. Si
A Framework for Uncertainty and Validation of 3D Registration Methods based on Points and Frames
 Int. Journal of Computer Vision
, 1997
"... In this paper, we propose and analyze several methods to estimate a rigid transformation from a set of 3D matched points or matched frames, which are important features in geometric algorithms. We also develop tools to predict and verify the accuracy of these estimations. The theoretical contributi ..."
Abstract

Cited by 82 (27 self)
 Add to MetaCart
(Show Context)
In this paper, we propose and analyze several methods to estimate a rigid transformation from a set of 3D matched points or matched frames, which are important features in geometric algorithms. We also develop tools to predict and verify the accuracy of these estimations. The theoretical contributions are: an intrinsic model of noise for transformations based on composition rather than addition; a unified formalism for the estimation of both the rigid transformation and its covariance matrix for points or frames correspondences, and a statistical validation method to verify the error estimation, which applies even when no "ground truth" is available. We analyze and demonstrate on synthetic data that our scheme is well behaved. The practical contribution of the paper is the validation of our transformation estimation method in the case of 3D medical images, which shows that an accuracy of the registration far below the size of a voxel can be achieved, and in the case of protein substructure matching, where frame features drastically improve both selectivity and complexity. 1.
On the Verification of Hypothesized Matches in ModelBased Recognition
, 1989
"... ... In this paper we present a more rigorous approach in which the conditions under which to accept a match are derived based on fundamental grounds. We obtain an expression that relates the probability of a match occurring at random to the fraction of model features that are accounted for by the ma ..."
Abstract

Cited by 80 (1 self)
 Add to MetaCart
... In this paper we present a more rigorous approach in which the conditions under which to accept a match are derived based on fundamental grounds. We obtain an expression that relates the probability of a match occurring at random to the fraction of model features that are accounted for by the match. This expression is a function of the number of model features, the number of image features, and a bound on the degree of sensor noise. One
Statistical Approaches to FeatureBased Object Recognition
, 1997
"... . This paper examines statistical approaches to modelbased object recognition. Evidence is presented indicating that, in some domains, normal (Gaussian) distributions are more accurate than uniform distributions for modeling feature fluctuations. This motivates the development of new maximumlikeli ..."
Abstract

Cited by 71 (2 self)
 Add to MetaCart
. This paper examines statistical approaches to modelbased object recognition. Evidence is presented indicating that, in some domains, normal (Gaussian) distributions are more accurate than uniform distributions for modeling feature fluctuations. This motivates the development of new maximumlikelihood and MAP recognition formulations which are based on normal feature models. These formulations lead to an expression for the posterior probability of the pose and correspondences given an image. Several avenues are explored for specifying a recognition hypothesis. In the first approach, correspondences are included as a part of the hypotheses. Search for solutions may be ordered as a combinatorial search in correspondence space, or as a search over pose space, where the same criterion can equivalently be viewed as a robust variant of chamfer matching. In the second approach, correspondences are not viewed as being a part of the hypotheses. This leads to a criterion that is a smooth funct...
Canonical Frames for Planar Object Recognition
, 1992
"... We present a canonical frame construction for determining projectively invariant indexing functions for nonalgebraic smooth plane curves. These invariants are semilocal rather than global, which promotes tolerance to occlusion. Two applications are demonstrated. Firstly, we report preliminary work ..."
Abstract

Cited by 69 (11 self)
 Add to MetaCart
We present a canonical frame construction for determining projectively invariant indexing functions for nonalgebraic smooth plane curves. These invariants are semilocal rather than global, which promotes tolerance to occlusion. Two applications are demonstrated. Firstly, we report preliminary work on building a model based recognition system for planar objects. We demonstrate that the invariant measures, derived from the canonical frame, provide sufficient discrimination between objects to be useful for recognition. Recognition is of partially occluded objects in cluttered scenes. Secondly, jigsaw puzzles are assembled and rendered from a single strongly perspective view of the separate pieces. Both applications require no camera calibration or pose information, and models are generated and verified directly from images.
ModelBased Object Recognition  A Survey of Recent Research
, 1994
"... We survey the main ideas behind recent research in modelbased object recognition. The survey covers representations for models and images and the methods used to match them. Perceptual organization, the use of invariants, indexing schemes, and match verification are also reviewed. We conclude that ..."
Abstract

Cited by 68 (1 self)
 Add to MetaCart
(Show Context)
We survey the main ideas behind recent research in modelbased object recognition. The survey covers representations for models and images and the methods used to match them. Perceptual organization, the use of invariants, indexing schemes, and match verification are also reviewed. We conclude that there is still much room for improvement in the scope, robustness, and efficiency of object recognition methods. We identify what we believe are the ways improvements will be achieved. ii Contents 1. Introduction .................................................................................................................................... 1 2. Representation ................................................................................................................................ 3 2.1 What makes a good shape representation? ............................................................................ 3 2.2 The choice of coordinate system ..........................................