Results 1 - 10
of
671
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time compl ..."
Abstract
-
Cited by 1315 (53 self)
- Add to MetaCart
(Show Context)
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper
Fast Planning Through Planning Graph Analysis
- ARTIFICIAL INTELLIGENCE
, 1995
"... We introduce a new approach to planning in STRIPS-like domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partial-order plan, or states that no valid pla ..."
Abstract
-
Cited by 1171 (3 self)
- Add to MetaCart
We introduce a new approach to planning in STRIPS-like domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partial-order plan, or states that no valid plan exists. We provide empirical evidence in favor of this approach, showing that Graphplan outperforms the total-order planner, Prodigy, and the partial-order planner, UCPOP, on a variety of interesting natural and artificial planning problems. We also give empirical evidence that the plans produced by Graphplan are quite sensible. Since searches made by this approach are fundamentally different from the searches of other common planning methods, they provide a new perspective on the planning problem.
What energy functions can be minimized via graph cuts?
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract
-
Cited by 1047 (23 self)
- Add to MetaCart
(Show Context)
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images
, 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract
-
Cited by 1010 (20 self)
- Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satisfying the constraints. The topology of our segmentation is unrestricted and both “object” and “background” segments may consist of several isolated parts. Some experimental results are presented in the context of photo/video editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new max-flow algorithm in [2].
Efficient Conflict Driven Learning in a Boolean Satisfiability Solver
- In ICCAD
, 2001
"... One of the most important features of current state-of-the-art SAT solvers is the use of conflict based backtracking and learning techniques. In this paper, we generalize various conflict driven learning strategies in terms of different partitioning schemes of the implication graph. We re-examine th ..."
Abstract
-
Cited by 348 (8 self)
- Add to MetaCart
(Show Context)
One of the most important features of current state-of-the-art SAT solvers is the use of conflict based backtracking and learning techniques. In this paper, we generalize various conflict driven learning strategies in terms of different partitioning schemes of the implication graph. We re-examine the learning techniques used in various SAT solvers and propose an array of new learning schemes. Extensive experiments with real world examples show that the best performing new learning scheme has at least a 2X speedup compared with learning schemes employed in state-of-the-art SAT solvers.
Graph Cuts and Efficient N-D Image Segmentation
, 2006
"... Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects in image data. Despite its simplicity, this application epitomizes the best features ..."
Abstract
-
Cited by 307 (7 self)
- Add to MetaCart
Combinatorial graph cut algorithms have been successfully applied to a wide range of problems in vision and graphics. This paper focusses on possibly the simplest application of graph-cuts: segmentation of objects in image data. Despite its simplicity, this application epitomizes the best features of combinatorial graph cuts methods in vision: global optima, practical efficiency, numerical robustness, ability to fuse a wide range of visual cues and constraints, unrestricted topological properties of segments, and applicability to N-D problems. Graph cuts based approaches to object extraction have also been shown to have interesting connections with earlier segmentation methods such as snakes, geodesic active contours, and level-sets. The segmentation energies optimized by graph cuts combine boundary regularization with region-based properties in the same fashion as Mumford-Shah style functionals. We present motivation and detailed technical description of the basic combinatorial optimization framework for image segmentation via s/t graph cuts. After the general concept of using binary graph cut algorithms for object segmentation was first proposed and tested in Boykov and Jolly (2001), this idea was widely studied in computer vision and graphics communities. We provide links to a large number of known extensions based on iterative parameter re-estimation and learning, multi-scale or hierarchical approaches, narrow bands, and other techniques for demanding photo, video, and medical applications.
Efficient Identification of Web Communities
- IN SIXTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING
, 2000
"... We define a community on the web as a set of sites that have more links (in either direction) to members of the community than to non-members. Members of such a community can be eciently identified in a maximum flow / minimum cut framework, where the source is composed of known members, and the sink ..."
Abstract
-
Cited by 293 (13 self)
- Add to MetaCart
We define a community on the web as a set of sites that have more links (in either direction) to members of the community than to non-members. Members of such a community can be eciently identified in a maximum flow / minimum cut framework, where the source is composed of known members, and the sink consists of well-known non-members. A focused crawler that crawls to a fixed depth can approximate community membership by augmenting the graph induced by the crawl with links to a virtual sink node. The effectiveness of the approximation algorithm is demonstrated with several crawl results that identify hubs, authorities, web rings, and other link topologies that are useful but not easily categorized. Applications of our approach include focused crawlers and search engines, automatic population of portal categories, and improved filtering.
Stochastic Approximation Approach to Stochastic Programming
"... In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of th ..."
Abstract
-
Cited by 267 (20 self)
- Add to MetaCart
(Show Context)
In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte Carlo sampling techniques, namely, the Stochastic Approximation (SA) and the Sample Average Approximation (SAA) methods. Both approaches, the SA and SAA methods, have a long history. Current opinion is that the SAA method can efficiently use a specific (say linear) structure of the considered problem, while the SA approach is a crude subgradient method which often performs poorly in practice. We intend to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems. We extend the analysis to the case of convex-concave stochastic saddle point problems, and present (in our opinion highly encouraging) results of numerical experiments.
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract
-
Cited by 246 (14 self)
- Add to MetaCart
(Show Context)
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse real-world networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large real-world networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “community-like.” This behavior is not explained, even at a qualitative level, by any of the commonly-used network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are well-embeddable in a low-dimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.