Results 1 -
3 of
3
B (2014) Aspect extraction with automated prior knowledge learning
- In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers
"... Abstract Aspect extraction is an important task in sentiment analysis. Topic modeling is a popular method for the task. However, unsupervised topic models often generate incoherent aspects. To address the issue, several knowledge-based models have been proposed to incorporate prior knowledge provid ..."
Abstract
-
Cited by 3 (2 self)
- Add to MetaCart
Abstract Aspect extraction is an important task in sentiment analysis. Topic modeling is a popular method for the task. However, unsupervised topic models often generate incoherent aspects. To address the issue, several knowledge-based models have been proposed to incorporate prior knowledge provided by the user to guide modeling. In this paper, we take a major step forward and show that in the big data era, without any user input, it is possible to learn prior knowledge automatically from a large amount of review data available on the Web. Such knowledge can then be used by a topic model to discover more coherent aspects. There are two key challenges: (1) learning quality knowledge from reviews of diverse domains, and (2) making the model fault-tolerant to handle possibly wrong knowledge. A novel approach is proposed to solve these problems. Experimental results using reviews from 36 domains show that the proposed approach achieves significant improvements over state-of-the-art baselines.
Mining topics in documents: standing on the shoulders of big data
- In Proceedings of the 20th ACM SIGKDD international
, 2014
"... ABSTRACT Topic modeling has been widely used to mine topics from documents. However, a key weakness of topic modeling is that it needs a large amount of data (e.g., thousands of documents) to provide reliable statistics to generate coherent topics. However, in practice, many document collections do ..."
Abstract
-
Cited by 2 (0 self)
- Add to MetaCart
(Show Context)
ABSTRACT Topic modeling has been widely used to mine topics from documents. However, a key weakness of topic modeling is that it needs a large amount of data (e.g., thousands of documents) to provide reliable statistics to generate coherent topics. However, in practice, many document collections do not have so many documents. Given a small number of documents, the classic topic model LDA generates very poor topics. Even with a large volume of data, unsupervised learning of topic models can still produce unsatisfactory results. In recently years, knowledge-based topic models have been proposed, which ask human users to provide some prior domain knowledge to guide the model to produce better topics. Our research takes a radically different approach. We propose to learn as humans do, i.e., retaining the results learned in the past and using them to help future learning. When faced with a new task, we first mine some reliable (prior) knowledge from the past learning/modeling results and then use it to guide the model inference to generate more coherent topics. This approach is possible because of the big data readily available on the Web. The proposed algorithm mines two forms of knowledge: must-link (meaning that two words should be in the same topic) and cannot-link (meaning that two words should not be in the same topic). It also deals with two problems of the automatically mined knowledge, i.e., wrong knowledge and knowledge transitivity. Experimental results using review documents from 100 product domains show that the proposed approach makes dramatic improvements over state-of-the-art baselines.
MEASURING THE INFLUENCE OF MAINSTREAM MEDIA
, 2014
"... Measuring the influence of mainstream media on twitter users ..."