Results 1 - 10
of
347
Stochastic volatility: likelihood inference and comparison with ARCH models
- Review of Economic Studies
, 1998
"... In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offse ..."
Abstract
-
Cited by 592 (40 self)
- Add to MetaCart
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offset mixture model, followed by an importance reweighting procedure. This approach is compared with several alternative methods using real data. The paper also develops simulation-based methods for filtering, likelihood evaluation and model failure diagnostics. The issue of model choice using non-nested likelihood ratios and Bayes factors is also investigated. These methods are used to compare the fit of stochastic volatility and GARCH models. All the procedures are illustrated in detail. 1.
Modeling and Forecasting Realized Volatility
, 2002
"... this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly right-skewed, the distributions of the logarithms of realized volatilities are a ..."
Abstract
-
Cited by 549 (50 self)
- Add to MetaCart
this paper is built. First, although raw returns are clearly leptokurtic, returns standardized by realized volatilities are approximately Gaussian. Second, although the distributions of realized volatilities are clearly right-skewed, the distributions of the logarithms of realized volatilities are approximately Gaussian. Third, the long-run dynamics of realized logarithmic volatilities are well approximated by a fractionally-integrated long-memory process. Motivated by the three ABDL empirical regularities, we proceed to estimate and evaluate a multivariate model for the logarithmic realized volatilities: a fractionally-integrated Gaussian vector autoregression (VAR) . Importantly, our approach explicitly permits measurement errors in the realized volatilities. Comparing the resulting volatility forecasts to those obtained from currently popular daily volatility models and more complicated high-frequency models, we find that our simple Gaussian VAR forecasts generally produce superior forecasts. Furthermore, we show that, given the theoretically motivated and empirically plausible assumption of normally distributed returns conditional on the realized volatilities, the resulting lognormal-normal mixture forecast distribution provides conditionally well-calibrated density forecasts of returns, from which we obtain accurate estimates of conditional return quantiles. In the remainder of this paper, we proceed as follows. We begin in section 2 by formally developing the relevant quadratic variation theory within a standard frictionless arbitrage-free multivariate pricing environment. In section 3 we discuss the practical construction of realized volatilities from high-frequency foreign exchange returns. Next, in section 4 we summarize the salient distributional features of r...
Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk
- THE JOURNAL OF FINANCE • VOL. LVI
, 2001
"... This paper uses a disaggregated approach to study the volatility of common stocks at the market, industry, and firm levels. Over the period 1962–1997 there has been a noticeable increase in firm-level volatility relative to market volatility. Accordingly, correlations among individual stocks and the ..."
Abstract
-
Cited by 526 (18 self)
- Add to MetaCart
This paper uses a disaggregated approach to study the volatility of common stocks at the market, industry, and firm levels. Over the period 1962–1997 there has been a noticeable increase in firm-level volatility relative to market volatility. Accordingly, correlations among individual stocks and the explanatory power of the market model for a typical stock have declined, whereas the number of stocks needed to achieve a given level of diversification has increased. All the volatility measures move together countercyclically and help to predict GDP growth. Market volatility tends to lead the other volatility series. Factors that may be responsible for these findings are suggested.
Econometric analysis of realized volatility and its use in estimating stochastic volatility models
, 2002
"... ..."
MULTIVARIATE GARCH MODELS: A SURVEY
"... This paper surveys the most important developments in multivariate ARCH-type modelling. It reviews the model specifications and inference methods, and identifies likely directions of future research. ..."
Abstract
-
Cited by 285 (10 self)
- Add to MetaCart
This paper surveys the most important developments in multivariate ARCH-type modelling. It reviews the model specifications and inference methods, and identifies likely directions of future research.
An empirical investigation of continuous-time equity return models
- Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of time-varying intensity. We find that any reasonably descriptive continuous-time model for equity-index returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract
-
Cited by 240 (12 self)
- Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of time-varying intensity. We find that any reasonably descriptive continuous-time model for equity-index returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equity-index returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuous-time representations for asset returns
Range-based estimation of stochastic volatility models
, 2002
"... We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that range-based volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence range-based Gaussian qu ..."
Abstract
-
Cited by 223 (19 self)
- Add to MetaCart
We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that range-based volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence range-based Gaussian quasi-maximum likelihood estimation produces highly efficient estimates of stochastic volatility models and extractions of latent volatility. We use our method to examine the dynamics of daily exchange rate volatility and find the evidence points strongly toward two-factor models with one highly persistent factor and one quickly mean-reverting factor. VOLATILITY IS A CENTRAL CONCEPT in finance, whether in asset pricing, portfolio choice, or risk management. Not long ago, theoretical models routinely assumed constant volatility ~e.g., Merton ~1969!, Black and Scholes ~1973!!. Today, however, we widely acknowledge that volatility is both time varying and predictable ~e.g., Andersen and Bollerslev ~1997!!, andstochastic volatility models are commonplace. Discrete- and continuous-time stochastic volatility models are extensively used in theoretical finance, empirical finance, and financial econometrics, both in academe and industry ~e.g., Hull and
Econometric analysis of realised volatility and its use in estimating stochastic volatility models
, 2001
"... ..."