Results 1  10
of
367
NESTA: A Fast and Accurate FirstOrder Method for Sparse Recovery
, 2009
"... Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder ..."
Abstract

Cited by 171 (2 self)
 Add to MetaCart
(Show Context)
Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel firstorder methods in convex optimization, most notably Nesterov’s smoothing technique, this paper introduces a fast and accurate algorithm for solving common recovery problems in signal processing. In the spirit of Nesterov’s work, one of the key ideas of this algorithm is a subtle averaging of sequences of iterates, which has been shown to improve the convergence properties of standard gradientdescent algorithms. This paper demonstrates that this approach is ideally suited for solving largescale compressed sensing reconstruction problems as 1) it is computationally efficient, 2) it is accurate and returns solutions with several correct digits, 3) it is flexible and amenable to many kinds of reconstruction problems, and 4) it is robust in the sense that its excellent performance across a wide range of problems does not depend on the fine tuning of several parameters. Comprehensive numerical experiments on realistic signals exhibiting a large dynamic range show that this algorithm compares favorably with recently proposed stateoftheart methods. We also apply the algorithm to solve other problems for which there are fewer alternatives, such as totalvariation minimization, and
Computational methods for sparse solution of linear inverse problems
, 2009
"... The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, ..."
Abstract

Cited by 167 (0 self)
 Add to MetaCart
The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a wealth of applications.
Learning with Structured Sparsity
"... This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set, this concept generalizes the group sparsity idea. A gener ..."
Abstract

Cited by 127 (15 self)
 Add to MetaCart
This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set, this concept generalizes the group sparsity idea. A general theory is developed for learning with structured sparsity, based on the notion of coding complexity associated with the structure. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured sparsity problem. Experiments demonstrate the advantage of structured sparsity over standard sparsity. 1.
Bayesian compressive sensing via belief propagation
 IEEE Trans. Signal Processing
, 2010
"... Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, subNyquist signal acquisition. When a statistical characterization of the signal is available, Bayesian inference can comple ..."
Abstract

Cited by 125 (19 self)
 Add to MetaCart
Compressive sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, subNyquist signal acquisition. When a statistical characterization of the signal is available, Bayesian inference can complement conventional CS methods based on linear programming or greedy algorithms. We perform approximate Bayesian inference using belief propagation (BP) decoding, which represents the CS encoding matrix as a graphical model. Fast encoding and decoding is provided using sparse encoding matrices, which also improve BP convergence by reducing the presence of loops in the graph. To decode a lengthN signal containing K large coefficients, our CSBP decoding algorithm uses O(K log(N)) measurements and O(N log 2 (N)) computation. Finally, sparse encoding matrices and the CSBP decoding algorithm can be modified to support a variety of signal models and measurement noise. 1
Templates for Convex Cone Problems with Applications to Sparse Signal Recovery
, 2010
"... This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, app ..."
Abstract

Cited by 122 (6 self)
 Add to MetaCart
This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal firstorder method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the totalvariation norm, ‖W x‖1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with stateoftheart methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient largescale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms. Keywords. Optimal firstorder methods, Nesterov’s accelerated descent algorithms, proximal algorithms, conic duality, smoothing by conjugation, the Dantzig selector, the LASSO, nuclearnorm minimization.
CurveletWavelet Regularized Split Bregman Iteration for Compressed Sensing
"... Compressed sensing is a new concept in signal processing. Assuming that a signal can be represented or approximated by only a few suitably chosen terms in a frame expansion, compressed sensing allows to recover this signal from much fewer samples than the ShannonNyquist theory requires. Many images ..."
Abstract

Cited by 119 (6 self)
 Add to MetaCart
(Show Context)
Compressed sensing is a new concept in signal processing. Assuming that a signal can be represented or approximated by only a few suitably chosen terms in a frame expansion, compressed sensing allows to recover this signal from much fewer samples than the ShannonNyquist theory requires. Many images can be sparsely approximated in expansions of suitable frames as wavelets, curvelets, wave atoms and others. Generally, wavelets represent pointlike features while curvelets represent linelike features well. For a suitable recovery of images, we propose models that contain weighted sparsity constraints in two different frames. Given the incomplete measurements f = Φu + ɛ with the measurement matrix Φ ∈ R K×N, K<<N, we consider a jointly sparsityconstrained optimization problem of the form argmin{‖ΛcΨcu‖1 + ‖ΛwΨwu‖1 + u 1 2‖f − Φu‖22}. Here Ψcand Ψw are the transform matrices corresponding to the two frames, and the diagonal matrices Λc, Λw contain the weights for the frame coefficients. We present efficient iteration methods to solve the optimization problem, based on Alternating Split Bregman algorithms. The convergence of the proposed iteration schemes will be proved by showing that they can be understood as special cases of the DouglasRachford Split algorithm. Numerical experiments for compressed sensing based Fourierdomain random imaging show good performances of the proposed curveletwavelet regularized split Bregman (CWSpB) methods,whereweparticularlyuseacombination of wavelet and curvelet coefficients as sparsity constraints.
1Bit Compressive Sensing
"... Abstract—Compressive sensing is a new signal acquisition technology with the potential to reduce the number of measurements required to acquire signals that are sparse or compressible in some basis. Rather than uniformly sampling the signal, compressive sensing computes inner products with a randomi ..."
Abstract

Cited by 98 (12 self)
 Add to MetaCart
(Show Context)
Abstract—Compressive sensing is a new signal acquisition technology with the potential to reduce the number of measurements required to acquire signals that are sparse or compressible in some basis. Rather than uniformly sampling the signal, compressive sensing computes inner products with a randomized dictionary of test functions. The signal is then recovered by a convex optimization that ensures the recovered signal is both consistent with the measurements and sparse. Compressive sensing reconstruction has been shown to be robust to multilevel quantization of the measurements, in which the reconstruction algorithm is modified to recover a sparse signal consistent to the quantization measurements. In this paper we consider the limiting case of 1bit measurements, which preserve only the sign information of the random measurements. Although it is possible to reconstruct using the classical compressive sensing approach by treating the 1bit measurements as ±1 measurement values, in this paper we reformulate the problem by treating the 1bit measurements as sign constraints and further constraining the optimization to recover a signal on the unit sphere. Thus the sparse signal is recovered within a scaling factor. We demonstrate that this approach performs significantly better compared to the classical compressive sensing reconstruction methods, even as the signal becomes less sparse and as the number of measurements increases. I.
An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
 IEEE Trans. Image Process
, 2011
"... Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and con ..."
Abstract

Cited by 92 (9 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, nonsmoothness) preclude the use of offtheshelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either totalvariation or waveletbased (or, more generally, framebased) regularization. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the stateoftheart. Index Terms—Convex optimization, frames, image reconstruction, image restoration, inpainting, totalvariation. A. Problem Formulation
A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation
 SIAM Journal on Scientific Computing
, 2010
"... Abstract. We propose a fast algorithm for solving the ℓ1regularized minimization problem minx∈R n µ‖x‖1 + ‖Ax − b ‖ 2 2 for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
(Show Context)
Abstract. We propose a fast algorithm for solving the ℓ1regularized minimization problem minx∈R n µ‖x‖1 + ‖Ax − b ‖ 2 2 for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a firstorder iterative method called “shrinkage ” yields an estimate of the subset of components of x likely to be nonzero in an optimal solution. Restricting the decision variables x to this subset and fixing their signs at their current values reduces the ℓ1norm ‖x‖1 to a linear function of x. The resulting subspace problem, which involves the minimization of a smaller and smooth quadratic function, is solved in the second phase. Our code FPC AS embeds this basic twostage algorithm in a continuation (homotopy) approach by assigning a decreasing sequence of values to µ. This code exhibits stateoftheart performance both in terms of its speed and its ability to recover sparse signals. It can even recover signals that are not as sparse as required by current compressive sensing theory.
Optimizing costly functions with simple constraints: A limitedmemory projected quasinewton algorithm
 Proc. of Conf. on Artificial Intelligence and Statistics
, 2009
"... An optimization algorithm for minimizing a smooth function over a convex set is described. Each iteration of the method computes a descent direction by minimizing, over the original constraints, a diagonal plus lowrank quadratic approximation to the function. The quadratic approximation is construct ..."
Abstract

Cited by 53 (9 self)
 Add to MetaCart
An optimization algorithm for minimizing a smooth function over a convex set is described. Each iteration of the method computes a descent direction by minimizing, over the original constraints, a diagonal plus lowrank quadratic approximation to the function. The quadratic approximation is constructed using a limitedmemory quasiNewton update. The method is suitable for largescale problems where evaluation of the function is substantially more expensive than projection onto the constraint set. Numerical experiments on onenorm regularized test problems indicate that the proposed method is competitive with stateoftheart methods such as boundconstrained LBFGS and orthantwise descent. We further show that the method generalizes to a wide class of problems, and substantially improves on stateoftheart methods for problems such as learning the structure of Gaussian graphical models and Markov random fields. 1