Results 1  10
of
122
The complexity of computing a Nash equilibrium
, 2006
"... We resolve the question of the complexity of Nash equilibrium by showing that the problem of computing a Nash equilibrium in a game with 4 or more players is complete for the complexity class PPAD. Our proof uses ideas from the recentlyestablished equivalence between polynomialtime solvability of n ..."
Abstract

Cited by 329 (23 self)
 Add to MetaCart
(Show Context)
We resolve the question of the complexity of Nash equilibrium by showing that the problem of computing a Nash equilibrium in a game with 4 or more players is complete for the complexity class PPAD. Our proof uses ideas from the recentlyestablished equivalence between polynomialtime solvability of normalform games and graphical games, and shows that these kinds of games can implement arbitrary members of a PPADcomplete class of Brouwer functions. 1
The Complexity of Pure Nash Equilibria
, 2004
"... We investigate from the computational viewpoint multiplayer games that are guaranteed to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash equilibrium can be computed in polynomial time in the symmetric network case, while the problem is PLScomplete in general. ..."
Abstract

Cited by 169 (6 self)
 Add to MetaCart
(Show Context)
We investigate from the computational viewpoint multiplayer games that are guaranteed to have pure Nash equilibria. We focus on congestion games, and show that a pure Nash equilibrium can be computed in polynomial time in the symmetric network case, while the problem is PLScomplete in general. We discuss implications to nonatomic congestion games, and we explore the scope of the potential function method for proving existence of pure Nash equilibria.
Computing the optimal strategy to commit to
 IN PROCEEDINGS OF THE 7TH ACM CONFERENCE ON ELECTRONIC COMMERCE (ACMEC
, 2006
"... In multiagent systems, strategic settings are often analyzed under the assumption that the players choose their strategies simultaneously. However, this model is not always realistic. In many settings, one player is able to commit to a strategy before the other player makes a decision. Such models a ..."
Abstract

Cited by 145 (21 self)
 Add to MetaCart
(Show Context)
In multiagent systems, strategic settings are often analyzed under the assumption that the players choose their strategies simultaneously. However, this model is not always realistic. In many settings, one player is able to commit to a strategy before the other player makes a decision. Such models are synonymously referred to as leadership, commitment, or Stackelberg models, and optimal play in such models is often significantly different from optimal play in the model where strategies are selected simultaneously. The recent surge in interest in computing gametheoretic solutions has so far ignored leadership models (with the exception of the interest in mechanism design, where the designer is implicitly in a leadership position). In this paper, we study how to compute optimal strategies to commit to under both commitment to pure strategies and commitment to mixed strategies, in both normalform and Bayesian games. We give both positive results (efficient algorithms) and negative results (NPhardness results).
Settling the Complexity of Computing TwoPlayer Nash Equilibria
"... We prove that Bimatrix, the problem of finding a Nash equilibrium in a twoplayer game, is complete for the complexity class PPAD (Polynomial Parity Argument, Directed version) introduced by Papadimitriou in 1991. Our result, building upon the work of Daskalakis, Goldberg, and Papadimitriou on the c ..."
Abstract

Cited by 88 (5 self)
 Add to MetaCart
(Show Context)
We prove that Bimatrix, the problem of finding a Nash equilibrium in a twoplayer game, is complete for the complexity class PPAD (Polynomial Parity Argument, Directed version) introduced by Papadimitriou in 1991. Our result, building upon the work of Daskalakis, Goldberg, and Papadimitriou on the complexity of fourplayer Nash equilibria [21], settles a long standing open problem in algorithmic game theory. It also serves as a starting point for a series of results concerning the complexity of twoplayer Nash equilibria. In particular, we prove the following theorems: • Bimatrix does not have a fully polynomialtime approximation scheme unless every problem in PPAD is solvable in polynomial time. • The smoothed complexity of the classic LemkeHowson algorithm and, in fact, of any algorithm for Bimatrix is not polynomial unless every problem in PPAD is solvable in randomized polynomial time. Our results also have a complexity implication in mathematical economics: • ArrowDebreu market equilibria are PPADhard to compute.
Computing Nash equilibria: Approximation and smoothed complexity
 In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
, 2006
"... By proving that the problem of computing a 1/n Θ(1)approximate Nash equilibrium remains PPADcomplete, we show that the BIMATRIX game is not likely to have a fully polynomialtime approximation scheme. In other words, no algorithm with time polynomial in n and 1/ǫ can compute an ǫapproximate Nash ..."
Abstract

Cited by 85 (11 self)
 Add to MetaCart
(Show Context)
By proving that the problem of computing a 1/n Θ(1)approximate Nash equilibrium remains PPADcomplete, we show that the BIMATRIX game is not likely to have a fully polynomialtime approximation scheme. In other words, no algorithm with time polynomial in n and 1/ǫ can compute an ǫapproximate Nash equilibrium of an n×n bimatrix game, unless PPAD ⊆ P. Instrumental to our proof, we introduce a new discrete fixedpoint problem on a highdimensional cube with a constant sidelength, such as on an ndimensional cube with sidelength 7, and show that they are PPADcomplete. Furthermore, we prove that it is unlikely, unless PPAD ⊆ RP, that the smoothed complexity of the LemkeHowson algorithm or any algorithm for computing a Nash equilibrium of a bimatrix game is polynomial in n and 1/σ under perturbations with magnitude σ. Our result answers a major open question in the smoothed analysis of algorithms and the approximation of Nash equilibria.
Convergence to Approximate Nash Equilibria in Congestion Games
 In SODA ’07
, 2007
"... ..."
(Show Context)
On the Complexity of Nash Equilibria and Other Fixed Points (Extended Abstract)
 IN PROC. FOCS
, 2007
"... We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 ..."
Abstract

Cited by 68 (8 self)
 Add to MetaCart
We reexamine what it means to compute Nash equilibria and, more generally, what it means to compute a fixed point of a given Brouwer function, and we investigate the complexity of the associated problems. Specifically, we study the complexity of the following problem: given a finite game, Γ, with 3 or more players, and given ɛ> 0, compute an approximation within ɛ of some (actual) Nash equilibrium. We show that approximation of an actual Nash Equilibrium, even to within any nontrivial constant additive factor ɛ < 1/2 in just one desired coordinate, is at least as hard as the long standing squareroot sum problem, as well as a more general arithmetic circuit decision problem that characterizes Ptime in a unitcost model of computation with arbitrary precision rational arithmetic; thus placing the approximation problem in P, or even NP, would resolve major open problems in the complexity of numerical computation. We show similar results for market equilibria: it is hard to estimate with any nontrivial accuracy the equilibrium prices in an exchange economy with a unique equilibrium, where the economy is given by explicit algebraic formulas for the excess demand functions. We define a class, FIXP, which captures search problems that can be cast as fixed point
Mixedinteger programming methods for finding Nash equilibria
 IN PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI
, 2005
"... We present, to our knowledge, the first mixed integer program (MIP) formulations for finding Nash equilibria in games (specifically, twoplayer normal form games). We study different design dimensions of search algorithms that are based on those formulations. Our MIP Nash algorithm outperforms Lemke ..."
Abstract

Cited by 64 (19 self)
 Add to MetaCart
We present, to our knowledge, the first mixed integer program (MIP) formulations for finding Nash equilibria in games (specifically, twoplayer normal form games). We study different design dimensions of search algorithms that are based on those formulations. Our MIP Nash algorithm outperforms LemkeHowson but not PorterNudelmanShoham (PNS) on GAMUT data. We argue why experiments should also be conducted on games with equilibria with mediumsized supports only, and present a methodology for generating such games. On such games MIP Nash drastically outperforms PNS but not LemkeHowson. Certain MIP Nash formulations also yield anytime algorithms for ɛequilibrium, with provable bounds. Another advantage of MIP Nash is that it can be used to find an optimal equilibrium (according to various objectives). The prior algorithms can be extended to that setting, but they are orders of magnitude slower.
A note on approximate Nash equilibria
 IN WINE ’06
, 2006
"... In view of the intractability of finding a Nash equilibrium, it is important to understand the limits of approximation in this context. A subexponential approximation scheme is known [LMM03], and no approximation better than 1 is possible by any algorithm that examines 4 equilibria involving fewer ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
(Show Context)
In view of the intractability of finding a Nash equilibrium, it is important to understand the limits of approximation in this context. A subexponential approximation scheme is known [LMM03], and no approximation better than 1 is possible by any algorithm that examines 4 equilibria involving fewer than log n strategies [Alt94]. We give a simple, lineartime algorithm examining just two strategies per player and resulting in a 1approximate Nash equilibrium in any 2player game. For the 2 more demanding notion of wellsupported approximate equilibrium due to [DGP06] no nontrivial bound is known; we show that the problem can be reduced to the case of winlose games (games with all utilities 0 − 1), and that an approximation of 5 is possible contingent upon a 6 graphtheoretic conjecture.
Computing Equilibria in MultiPlayer Games
 In Proceedings of the Annual ACMSIAM Symposium on Discrete Algorithms (SODA
, 2004
"... We initiate the systematic study of algorithmic issues involved in finding equilibria (Nash and correlated) in games with a large number of players; such games, in order to be computationally meaningful, must be presented in some succinct, gamespecific way. We develop a general framework for obta ..."
Abstract

Cited by 53 (4 self)
 Add to MetaCart
(Show Context)
We initiate the systematic study of algorithmic issues involved in finding equilibria (Nash and correlated) in games with a large number of players; such games, in order to be computationally meaningful, must be presented in some succinct, gamespecific way. We develop a general framework for obtaining polynomialtime algorithms for optimizing over correlated equilibria in such settings, and show how it can be applied successfully to symmetric games (for which we actually find an exact polytopal characterization), graphical games, and congestion games, among others. We also present complexity results implying that such algorithms are not possible in certain other such games. Finally, we present a polynomialtime algorithm, based on quantifier elimination, for finding a Nash equilibrium in symmetric games when the number of strategies is relatively small.