Results 1  10
of
276
An extended localized algorithm for connected dominating set formation in ad hoc wireless networks
 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
, 2004
"... Efficient routing among a set of mobile hosts is one of the most important functions in ad hoc wireless networks. Routing based on a connected dominating set is a promising approach, where the search space for a route is reduced to the hosts in the set. A set is dominating if all the hosts in the sy ..."
Abstract

Cited by 143 (15 self)
 Add to MetaCart
Efficient routing among a set of mobile hosts is one of the most important functions in ad hoc wireless networks. Routing based on a connected dominating set is a promising approach, where the search space for a route is reduced to the hosts in the set. A set is dominating if all the hosts in the system are either in the set or neighbors of hosts in the set. The efficiency of dominatingsetbased routing mainly depends on the overhead introduced in the formation of the dominating set and the size of the dominating set. In this paper, we first review a localized formation of a connected dominating set called marking process and dominatingsetbased routing. Then, we propose a dominant pruning rule to reduce the size of the dominating set. This dominant pruning rule (called Rule k) is a generalization of two existing rules (called Rule 1 and Rule 2, respectively). We prove that the vertex set derived by applying Rule k is still a connected dominating set. Rule k is more effective in reducing the dominating set derived from the marking process than the combination of Rules 1 and 2 and, surprisingly, in a restricted implementation with local neighborhood information, Rule k has the same communication complexity and less computation complexity. Simulation results confirm that Rule k outperforms Rules 1 and 2, especially in networks with relatively high vertex degree and high percentage of unidirectional links. We also prove that an upper bound exists on the average size of the dominating set derived from Rule k in its restricted implementation.
Messageoptimal connected dominating sets in mobile ad hoc networks
 in Proceedings of The Third ACM International Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc), 2002
"... A connected dominating set (CDS) for a graph G(V,E) isa subset V ′ of V, such that each node in V − V ′ is adjacent to some node in V ′,andV ′ induces a connected subgraph. A CDS has been proposed as a virtual backbone for routing in wireless ad hoc networks. However, it is NPhard to find a minimum ..."
Abstract

Cited by 110 (6 self)
 Add to MetaCart
(Show Context)
A connected dominating set (CDS) for a graph G(V,E) isa subset V ′ of V, such that each node in V − V ′ is adjacent to some node in V ′,andV ′ induces a connected subgraph. A CDS has been proposed as a virtual backbone for routing in wireless ad hoc networks. However, it is NPhard to find a minimum connected dominating set (MCDS). Approximation algorithms for MCDS have been proposed in the literature. Most of these algorithms suffer from a very poor approximation ratio, and from high time complexity and message complexity. Recently, new distributed heuristics for constructing a CDS were developed, with constant approximation ratio of 8. These new heuristics are based on a construction of a spanning tree, which makes it very costly in terms of communication overhead to maintain the CDS in the case of mobility and topology changes. In this paper, we propose the first distributed approximation algorithm to construct a MCDS for the unitdiskgraph with a constant approximation ratio, and linear time and linear message complexity. This algorithm is fully localized, and does not depend on the spanning tree. Thus, the maintenance of the CDS after changes of topology guarantees the maintenance of the same approximation ratio. In this algorithm each node requires knowledge of its singlehop neighbors, and only a constant number of twohop and threehop neighbors. The message length is O(log n) bits. Keywords ad hoc networks, connected dominating set, maximal independent
Fast Distributed Algorithms for (Weakly) Connected Dominating Sets and LinearSize Skeletons
 In Proc. of the ACMSIAM Symposium on Discrete Algorithms (SODA
, 2003
"... Abstract Motivated by routing issues in ad hoc networks, we present polylogarithmictime distributed algorithms for two problems. Given a network, we first show how to compute connected and weakly connected dominating sets whose size is at most O(log ) times the optimum, being the maximum degree of ..."
Abstract

Cited by 72 (4 self)
 Add to MetaCart
(Show Context)
Abstract Motivated by routing issues in ad hoc networks, we present polylogarithmictime distributed algorithms for two problems. Given a network, we first show how to compute connected and weakly connected dominating sets whose size is at most O(log ) times the optimum, being the maximum degree of the input network. This is bestpossible if NP DTIME[n O(log log n) ] and if the processors are required to run in polynomialtime. We then show how to construct dominating sets that have the above properties, as well as the "low stretch" property that any two adjacent nodes in the network have their dominators at a distance of at most O(log n) in the output network. (Given a dominating set S, a dominator of a vertex u is any v ∈ S such that the distance between u and v is at most one.) We also show our time bounds to be essentially optimal.
Multicast capacity for large scale wireless ad hoc networks
 In ACM Mobicom
, 2007
"... In this paper, we study the capacity of a largescale random wireless network for multicast. Assume that n wireless nodes are randomly deployed in a square region with sidelength a and all nodes have the uniform transmission range r and uniform interference range R> r. We further assume that eac ..."
Abstract

Cited by 68 (23 self)
 Add to MetaCart
In this paper, we study the capacity of a largescale random wireless network for multicast. Assume that n wireless nodes are randomly deployed in a square region with sidelength a and all nodes have the uniform transmission range r and uniform interference range R> r. We further assume that each wireless node can transmit/receive at W bits/second over a common wireless channel. For each node vi, we randomly pick k − 1 nodes from the other n − 1 nodes as the receivers of the multicast session rooted at node vi. The aggregated multicast capacity is defined as the total data rate of all multicast sessions in the network. In this paper we derive matching asymptotic upper bounds and lower bounds on multicast capacity of random wireless networks. We show that the total multicast capacity is Θ( � n log n · W √ k) when k = O ( n log n
Initializing Newly Deployed Ad Hoc and Sensor Networks
 in Proceedings of 10 th Annual International Conference on Mobile Computing and Networking (MOBICOM
, 2004
"... A newly deployed multihop radio network is unstructured and lacks a reliable and e#cient communication scheme. In this paper, we take a step towards analyzing the problems existing during the initialization phase of ad hoc and sensor networks. Particularly, we model the network as a multihop quasi ..."
Abstract

Cited by 67 (15 self)
 Add to MetaCart
(Show Context)
A newly deployed multihop radio network is unstructured and lacks a reliable and e#cient communication scheme. In this paper, we take a step towards analyzing the problems existing during the initialization phase of ad hoc and sensor networks. Particularly, we model the network as a multihop quasi unit disk graph and allow nodes to wake up asynchronously at any time. Further, nodes do not feature a reliable collision detection mechanism, and they have only limited knowledge about the network topology. We show that even for this restricted model, a good clustering can be computed e#ciently. Our algorithm e#ciently computes an asymptotically optimal clustering. Based on this algorithm, we describe a protocol for quickly establishing synchronized sleep and listen schedule between nodes within a cluster. Additionally, we provide simulation results in a variety of settings.
A Generic Distributed Broadcast Scheme in Ad Hoc Wireless Networks,”
 IEEE Transactions on Computer,
, 2004
"... ..."
(Show Context)
Analysis of target detection performance for wireless sensor networks
 In DCOSS’05
, 2005
"... In surveillance and tracking applications, wireless sensor nodes collectively monitor the existence of intruding targets. In this paper, we derive closed form results for predicting surveillance performance attributes, represented by detection probability and average detection delay of intruding tar ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
In surveillance and tracking applications, wireless sensor nodes collectively monitor the existence of intruding targets. In this paper, we derive closed form results for predicting surveillance performance attributes, represented by detection probability and average detection delay of intruding targets, based on tunable system parameters, represented by node density and sleep duty cycle. The results apply to both stationary and mobile targets, and shed light on the fundamental connection between aspects of sensing quality and deployment choices. We demonstrate that our results are robust to realistic sensing models, which are proposed based on experimental measurements of passive infrared sensors. We also validate the correctness of our results through extensive simulations. I.
Forwardnodesetbased broadcast in clustered mobile ad hoc networks
 Wireless Communication and Mobile Computing
, 2003
"... A taxonomy of broadcast protocols in mobile ad hoc networks (MANETs) is given where protocols are classified into four groups: global, quasiglobal, quasilocal, and local. The taxonomy also divides protocols based on the nature of algorithms: probabilistic and deterministic. The locality of mainten ..."
Abstract

Cited by 62 (14 self)
 Add to MetaCart
A taxonomy of broadcast protocols in mobile ad hoc networks (MANETs) is given where protocols are classified into four groups: global, quasiglobal, quasilocal, and local. The taxonomy also divides protocols based on the nature of algorithms: probabilistic and deterministic. The locality of maintenance also plays an important role in evaluating the protocol. An important objective in designing a broadcast protocol is to reduce broadcast redundancy to save scarce resources such as energy and bandwidth and to avoid the broadcast storm problem. This objective should be achieved without introducing excessive overhead and time delay, measured by the sequential rounds of information exchanges. This is done by choosing a small forward node set that forms a connected dominating set (CDS) to carry out a broadcast process. In this paper, a clustered network model is proposed in which each node is a clusterhead in the clustered architecture. Clusterheads are connected by carefully selecting nonclusterhead nodes locally at each clusterhead to connect clusterheads within 2.5 hops, a novel notion proposed in this paper. Information of neighbor clusterheads are piggybacked with the broadcast packet to further reduce each forward node set. It is shown that this approach is quasilocal with locality of maintenance. In addition, this approach has a constant approximation ratio to the minimum connected dominating set (MCDS) and generates a small forward node set in the average case. Comparisons are also done through simulation with representative protocols from each of the four groups of protocols based on the proposed taxonomy.
Efficient distributed lowcost backbone formation for wireless networks
 IEEE Transactions on Parallel and Distributed Systems
, 2006
"... Backbone has been used extensively in various aspects (e.g., routing, route maintenance, broadcast, scheduling) for wireless networks. Previous methods are mostly designed to minimize the backbone size. However, in many applications, it is desirable to construct a backbone with small cost when eac ..."
Abstract

Cited by 51 (8 self)
 Add to MetaCart
(Show Context)
Backbone has been used extensively in various aspects (e.g., routing, route maintenance, broadcast, scheduling) for wireless networks. Previous methods are mostly designed to minimize the backbone size. However, in many applications, it is desirable to construct a backbone with small cost when each wireless node has a cost of being in the backbone. In this paper, we first show that previous methods specifically designed to minimize the backbone size may produce a backbone with a large cost. We then propose an efficient distributed method to construct a weighted sparse backbone with low cost. We prove that the total cost of the constructed backbone is within a small constant factor of the optimum for homogeneous networks when either the nodes ’ costs are smooth or the network maximum node degree is bounded. We also show that with a small modification the constructed backbone is efficient for unicast: the total cost (or hop) of the least cost (or hop) path connecting any two nodes using backbone is no more than 3 (or 4) times of the least cost (or hop) path in the original communication graph. As a side product, we give an efficient overlay based multicast structure whose total cost is no more than 10 times of the minimum when the network is modeled by UDG. Our theoretical results are corroborated by our simulation studies.
Randomized 3D Geographic Routing
"... Abstract—We reconsider the problem of geographic routing in wireless ad hoc networks. We are interested in local, memoryless routing algorithms, i.e. each network node bases its routing decision solely on its local view of the network, nodes do not store any message state, and the message itself can ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
(Show Context)
Abstract—We reconsider the problem of geographic routing in wireless ad hoc networks. We are interested in local, memoryless routing algorithms, i.e. each network node bases its routing decision solely on its local view of the network, nodes do not store any message state, and the message itself can only carry information about O(1) nodes. In geographic routing schemes, each network node is assumed to know the coordinates of itself and all adjacent nodes, and each message carries the coordinates of its target. Whereas many of the aspects of geographic routing have already been solved for 2D networks, little is known about higherdimensional networks. It has been shown only recently that there is in fact no local memoryless routing algorithm for 3D networks that delivers messages deterministically. In this paper, we show that a cubic routing stretch constitutes a lower bound for any local memoryless routing algorithm, and propose and analyze several randomized geographic routing algorithms which work well for 3D network topologies. For unit ball graphs, we present a technique to locally capture the surface of holes in the network, which leads to 3D routing algorithms similar to the greedyfacegreedy approach for 2D networks. I.