Results 1 
2 of
2
Discriminative Feature Selection for Uncertain Graph Classification
"... Mining discriminative features for graph data has attracted much attention in recent years due to its important role in constructing graph classifiers, generating graph indices, etc. Most measurement of interestingness of discriminative subgraph features are defined on certain graphs, where the stru ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
Mining discriminative features for graph data has attracted much attention in recent years due to its important role in constructing graph classifiers, generating graph indices, etc. Most measurement of interestingness of discriminative subgraph features are defined on certain graphs, where the structure of graph objects are certain, and the binary edges within each graph represent the “presence ” of linkages among the nodes. In many realworld applications, however, the linkage structure of the graphs is inherently uncertain. Therefore, existing measurements of interestingness based upon certain graphs are unable to capture the structural uncertainty in these applications effectively. In this paper, we study the problem of discriminative subgraph feature selection from uncertain graphs. This problem is challenging and different from conventional subgraph mining problems because both the structure of the graph objects and the discrimination score of each subgraph feature are uncertain. To address these challenges, we propose a novel discriminative subgraph feature selection method, Dug, which can find discriminative subgraph features in uncertain graphs based upon different statistical measures including expectation, median, mode and ϕprobability. We first compute the probability distribution of the discrimination scores for each subgraph feature based on dynamic programming. Then a branchandbound algorithm is proposed to search for discriminative subgraphs efficiently. Extensive experiments on various neuroimaging applications (i.e., Alzheimers Disease, ADHD and HIV) have been performed to analyze the gain in performance by taking into account structural uncertainties in identifying discriminative subgraph features for graph classification.
MultiScale Information, Network, Causality, and Dynamics: Mathematical Computation and Bayesian Inference to Cognitive Neuroscience and Aging
"... The human brain is estimated to contain 100 billion or so neurons and 10 thousand times as many connections. Neurons never function in isolation: each of them is connected to 10, 000 others and they interact extensively every millisecond. Brain cells are organized into neural circuits often in a dyn ..."
Abstract
 Add to MetaCart
(Show Context)
The human brain is estimated to contain 100 billion or so neurons and 10 thousand times as many connections. Neurons never function in isolation: each of them is connected to 10, 000 others and they interact extensively every millisecond. Brain cells are organized into neural circuits often in a dynamic way, processing specific types of information and providing the