Results 1 - 10
of
265
Learning to link with wikipedia
, 2008
"... This paper describes how to automatically cross-reference documents with Wikipedia: the largest knowledge base ever known. It explains how machine learning can be used to identify significant terms within unstructured text, and enrich it with links to the appropriate Wikipedia articles. The resultin ..."
Abstract
-
Cited by 322 (7 self)
- Add to MetaCart
This paper describes how to automatically cross-reference documents with Wikipedia: the largest knowledge base ever known. It explains how machine learning can be used to identify significant terms within unstructured text, and enrich it with links to the appropriate Wikipedia articles. The resulting link detector and disambiguator performs very well, with recall and precision of almost 75%. This performance is constant whether the system is evaluated on Wikipedia articles or “real world ” documents. This work has implications far beyond enriching documents with explanatory links. It can provide structured knowledge about any unstructured fragment of text. Any task that is currently addressed with bags of words—indexing, clustering, retrieval, and summarization to name a few—could use the techniques described here to draw on a vast network of concepts and semantics.
Dbpedia spotlight: Shedding light on the web of documents
- In Proceedings of the 7th International Conference on Semantic Systems (I-Semantics
, 2011
"... Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a syste ..."
Abstract
-
Cited by 174 (5 self)
- Add to MetaCart
(Show Context)
Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to configure the annotations to their specific needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation confidence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.
An Effective, Low-Cost Measure of Semantic Relatedness Obtained from Wikipedia Links
- In Proceedings of AAAI 2008
, 2008
"... This paper describes a new technique for obtaining measures of semantic relatedness. Like other recent approaches, it uses Wikipedia to provide structured world knowledge about the terms of interest. Our approach is unique in that it does so using the hyperlink structure of Wikipedia rather than its ..."
Abstract
-
Cited by 167 (8 self)
- Add to MetaCart
(Show Context)
This paper describes a new technique for obtaining measures of semantic relatedness. Like other recent approaches, it uses Wikipedia to provide structured world knowledge about the terms of interest. Our approach is unique in that it does so using the hyperlink structure of Wikipedia rather than its category hierarchy or textual content. Evaluation with manually defined measures of semantic relatedness reveals this to be an effective compromise between the ease of computation of the former approach and the accuracy of the latter.
Collective Annotation of Wikipedia Entities in Web Text
"... To take the first step beyond keyword-based search toward entity-based search, suitable token spans (“spots”) on documents must be identified as references to real-world entities from an entity catalog. Several systems have been proposed to link spots on Web pages to entities in Wikipedia. They are ..."
Abstract
-
Cited by 105 (9 self)
- Add to MetaCart
(Show Context)
To take the first step beyond keyword-based search toward entity-based search, suitable token spans (“spots”) on documents must be identified as references to real-world entities from an entity catalog. Several systems have been proposed to link spots on Web pages to entities in Wikipedia. They are largely based on local compatibility between the text around the spot and textual metadata associated with the entity. Two recent systems exploit inter-label dependencies, but in limited ways. We propose a general collective disambiguation approach. Our premise is that coherent documents refer to entities from one or a few related topics or domains. We give formulations for the trade-off between local spot-to-entity compatibility and measures of global coherence between entities. Optimizing the overall entity assignment is NP-hard. We investigate practical solutions based on local hill-climbing, rounding integer linear programs, and pre-clustering entities followed by local optimization within clusters. In experiments involving over a hundred manuallyannotated Web pages and tens of thousands of spots, our approaches significantly outperform recently-proposed algorithms.
TAGME: On-the-fly annotation of short text fragents (by Wikipedia entities). Available on http://arxiv.org/abs/1006.3498
"... We designed and implemented Tagme, a system that is able to efficiently and judiciously augment a plain-text with pertinent hyperlinks to Wikipedia pages. The specialty of Tagme with respect to known systems [5, 8] is that it may annotate texts which are short and poorly composed, such as snippets o ..."
Abstract
-
Cited by 82 (6 self)
- Add to MetaCart
We designed and implemented Tagme, a system that is able to efficiently and judiciously augment a plain-text with pertinent hyperlinks to Wikipedia pages. The specialty of Tagme with respect to known systems [5, 8] is that it may annotate texts which are short and poorly composed, such as snippets of search-engine results, tweets, news, etc.. This annotation is extremely informative, so any task that is currently addressed using the bag-of-words paradigm could benefit from using this annotation to draw upon (the millions of) Wikipedia pages and their inter-relations. Categories andSubject Descriptors
Mining meaning from Wikipedia
, 2009
"... Wikipedia is a goldmine of information; not just for its many readers, but also for the growing community of researchers who recognize it as a resource of exceptional scale and utility. It represents a vast investment of manual effort and judgment: a huge, constantly evolving tapestry of concepts an ..."
Abstract
-
Cited by 76 (2 self)
- Add to MetaCart
Wikipedia is a goldmine of information; not just for its many readers, but also for the growing community of researchers who recognize it as a resource of exceptional scale and utility. It represents a vast investment of manual effort and judgment: a huge, constantly evolving tapestry of concepts and relations that is being applied to a host of tasks. This article provides a comprehensive description of this work. It focuses on research that extracts and makes use of the concepts, relations, facts and descriptions found in Wikipedia, and organizes the work into four broad categories: applying Wikipedia to natural language processing; using it to facilitate information retrieval and information extraction; and as a resource for ontology building. The article addresses how Wikipedia is being used as is, how it is being improved and adapted, and how it is being combined with other structures to create entirely new resources. We identify the research groups and individuals involved, and how their work has developed in the last few years. We provide a comprehensive list of the open-source software they have produced.
Rijke. Adding semantics to microblog posts
- In WSDM ’12. ACM
, 2012
"... Microblogs have become an important source of information for the purpose of marketing, intelligence, and reputation management. Streams of microblogs are of great value because of their direct and real-time nature. Determining what an individual microblog post is about, however, can be non-trivial ..."
Abstract
-
Cited by 64 (14 self)
- Add to MetaCart
(Show Context)
Microblogs have become an important source of information for the purpose of marketing, intelligence, and reputation management. Streams of microblogs are of great value because of their direct and real-time nature. Determining what an individual microblog post is about, however, can be non-trivial because of creative language usage, the highly contextualized and informal nature of microblog posts, and the limited length of this form of communication. We propose a solution to the problem of determining what a mi-croblog post is about through semantic linking: we add seman-tics to posts by automatically identifying concepts that are seman-tically related to it and generating links to the corresponding Wiki-pedia articles. The identified concepts can subsequently be used for, e.g., social media mining, thereby reducing the need for man-ual inspection and selection. Using a purpose-built test collection of tweets, we show that recently proposed approaches for semantic linking do not perform well, mainly due to the idiosyncratic nature of microblog posts. We propose a novel method based on machine learning with a set of innovative features and show that it is able to achieve significant improvements over all other methods, espe-cially in terms of precision.
Topic Indexing with Wikipedia
"... Wikipedia article names can be utilized as a controlled vocabulary for identifying the main topics in a document. Wikipedia’s 2M articles cover the terminology of nearly any document collection, which permits controlled indexing in the absence of manually created vocabularies. We combine state-of-th ..."
Abstract
-
Cited by 55 (4 self)
- Add to MetaCart
(Show Context)
Wikipedia article names can be utilized as a controlled vocabulary for identifying the main topics in a document. Wikipedia’s 2M articles cover the terminology of nearly any document collection, which permits controlled indexing in the absence of manually created vocabularies. We combine state-of-the-art strategies for automatic controlled indexing with Wikipedia’s unique property—a richly hyperlinked encyclopedia. We evaluate the scheme by comparing automatically assigned topics with those chosen manually by human indexers. Analysis of indexing consistency shows that our algorithm outperforms some human subjects. 1.
Annotating and Searching Web Tables Using Entities, Types and Relationships
"... Tables are a universal idiom to present relational data. Billions of tables on Web pages express entity references, attributes and relationships. This representation of relational world knowledge is usually considerably better than completely unstructured, free-format text. At the same time, unlike ..."
Abstract
-
Cited by 55 (2 self)
- Add to MetaCart
(Show Context)
Tables are a universal idiom to present relational data. Billions of tables on Web pages express entity references, attributes and relationships. This representation of relational world knowledge is usually considerably better than completely unstructured, free-format text. At the same time, unlike manually-created knowledge bases, relational information mined from “organic ” Web tables need not be constrained by availability of precious editorial time. Unfortunately, in the absence of any formal, uniform schema imposed on Web tables, Web search cannot take advantage of these high-quality sources of relational information. In this paper we propose new machine learning techniques to annotate table cells with entities that they likely mention, table columns with types from which entities are drawn for cells in the column, and relations that pairs of table columns seek to express. We propose a new graphical model for making all these labeling decisions for each table simultaneously, rather than make separate local decisions for entities, types and relations. Experiments using the YAGO catalog, DB-Pedia, tables from Wikipedia, and over 25 million HTML tables from a 500 million page Web crawl uniformly show the superiority of our approach. We also evaluate the impact of better annotations on a prototype relational Web search tool. We demonstrate clear benefits of our annotations beyond indexing tables in a purely textual manner. 1.
Collective entity linking in web text: A graph-based method
- in: Proceedings of the 34th international Conference on Research and Development in Information Retrieval
, 2011
"... Entity Linking (EL) is the task of linking name mentions in Web text with their referent entities in a knowledge base. Traditional EL methods usually link name mentions in a document by assuming them to be independent. However, there is often additional interdependence between different EL decisions ..."
Abstract
-
Cited by 52 (2 self)
- Add to MetaCart
(Show Context)
Entity Linking (EL) is the task of linking name mentions in Web text with their referent entities in a knowledge base. Traditional EL methods usually link name mentions in a document by assuming them to be independent. However, there is often additional interdependence between different EL decisions, i.e., the entities in the same document should be semantically related to each other. In these cases, Collective Entity Linking, in which the name mentions in the same document are linked jointly by exploiting the interdependence between them, can improve the entity linking accuracy. This paper proposes a graph-based collective EL method, which can model and exploit the global interdependence between different EL decisions. Specifically, we first propose a graph-based representation, called Referent Graph, which can model the global interdependence between different EL decisions. Then we propose a collective inference algorithm, which can jointly infer the referent entities of all name mentions by exploiting the interdependence captured in Referent Graph. The key benefit of our method comes from: 1) The global interdependence model of EL decisions; 2) The purely collective nature of the inference algorithm, in which evidence for related EL decisions can be reinforced into high-probability decisions. Experimental results show that our method can achieve significant performance improvement over the traditional EL methods.