Results 11  20
of
369
SelfOrganization and Identification of Web Communities
 IEEE Computer
, 2002
"... Despite the decentralized and unorganized nature of the web, we show that the web selforganizes such that communities of highly related pages can be efficiently identified based purely on connectivity. ..."
Abstract

Cited by 211 (0 self)
 Add to MetaCart
(Show Context)
Despite the decentralized and unorganized nature of the web, we show that the web selforganizes such that communities of highly related pages can be efficiently identified based purely on connectivity.
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 208 (17 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
Connected Components in Random Graphs with Given Expected Degree Sequences
 ANNALS OF COMBINATORICS
"... ..."
Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint
 In SRDS
, 2003
"... Abstract How will a virus propagate in a real network?Does an epidemic threshold exist for a finite powerlaw graph, or any finite graph? How long does ittake to disinfect a network given particular values of infection rate and virus death rate? We answer the first question by providing equations th ..."
Abstract

Cited by 167 (19 self)
 Add to MetaCart
(Show Context)
Abstract How will a virus propagate in a real network?Does an epidemic threshold exist for a finite powerlaw graph, or any finite graph? How long does ittake to disinfect a network given particular values of infection rate and virus death rate? We answer the first question by providing equations that accurately model virus propagation in any network including real and synthesized networkgraphs. We propose a general epidemic threshold condition that applies to arbitrary graphs: weprove that, under reasonable approximations, the epidemic threshold for a network is closely relatedto the largest eigenvalue of its adjacency matrix. Finally, for the last question, we show that infections tend to zero exponentially below the epidemic threshold. We show that our epidemic threshold modelsubsumes many known thresholds for specialcase graphs (e.g., Erd&quot;osR'enyi, BA powerlaw, homogeneous); we show that the threshold tends to zero for infinite powerlaw graphs. Finally, we illustrate thepredictive power of our model with extensive experiments on real and synthesized graphs. We show thatour threshold condition holds for arbitrary graphs.
Searching the Web
 ACM TRANSACTIONS ON INTERNET TECHNOLOGY
, 2001
"... We offer an overview of current Web search engine design. After introducing a generic search engine architecture, we examine each engine component in turn. We cover crawling, local Web page storage, indexing, and the use of link analysis for boosting search performance. The most common design and im ..."
Abstract

Cited by 162 (1 self)
 Add to MetaCart
(Show Context)
We offer an overview of current Web search engine design. After introducing a generic search engine architecture, we examine each engine component in turn. We cover crawling, local Web page storage, indexing, and the use of link analysis for boosting search performance. The most common design and implementation techniques for each of these components are presented. For this presentation we draw from the literature and from our own experimental search engine testbed. Emphasis is on introducing the fundamental concepts and the results of several performance analyses we conducted to compare different designs.
Challenges in Web Search Engines
, 2002
"... This article presents a highlevel discussion of some problems in information retrieval that are unique to web search engines. The goal is to raise awareness and stimulate research in these areas. ..."
Abstract

Cited by 128 (0 self)
 Add to MetaCart
This article presents a highlevel discussion of some problems in information retrieval that are unique to web search engines. The goal is to raise awareness and stimulate research in these areas.
A Framework For Community Identification in Dynamic Social Networks
, 2007
"... We propose frameworks and algorithms for identifying communities in social networks that change over time. Communities are intuitively characterized as “unusually densely knit ” subsets of a social network. This notion becomes more problematic if the social interactions change over time. Aggregating ..."
Abstract

Cited by 114 (6 self)
 Add to MetaCart
We propose frameworks and algorithms for identifying communities in social networks that change over time. Communities are intuitively characterized as “unusually densely knit ” subsets of a social network. This notion becomes more problematic if the social interactions change over time. Aggregating social networks over time can radically misrepresent the existing and changing community structure. Instead, we propose an optimizationbased approach for modeling dynamic community structure. We prove that finding the most explanatory community structure is NPhard and APXhard, and propose algorithms based on dynamic programming, exhaustive search, maximum matching, and greedy heuristics. We demonstrate empirically that the heuristics trace developments of community structure accurately for several synthetic and realworld examples.
Using PageRank to Characterize Web Structure
"... Recent work on modeling the web graph has dwelt on capturing the degree distributions observed on the web. Pointing out that this represents a heavy reliance on “local” properties of the web graph, we study the distribution of PageRank values on the web. Our measurements suggest that PageRank value ..."
Abstract

Cited by 114 (0 self)
 Add to MetaCart
Recent work on modeling the web graph has dwelt on capturing the degree distributions observed on the web. Pointing out that this represents a heavy reliance on “local” properties of the web graph, we study the distribution of PageRank values on the web. Our measurements suggest that PageRank values on the web follow a power law. We then develop generative models for the web graph that explain this observation and moreover remain faithful to previously studied degree distributions. We analyze these models and compare the analysis to both snapshots from the web and to graphs generated by simulations on the new models. To our knowledge this represents the first modeling of the web that goes beyond fitting degree distributions on the web.
A Random Graph Model for Power Law Graphs
 Experimental Math
, 2000
"... We propose a random graph m del which is a special case of sparse random graphs with given degree sequences which satisfy a power law. Thism odel involves only asm all num ber of param eters, called logsize and loglog growth rate. These param eters capturesom e universal characteristics ofm assive ..."
Abstract

Cited by 107 (4 self)
 Add to MetaCart
We propose a random graph m del which is a special case of sparse random graphs with given degree sequences which satisfy a power law. Thism odel involves only asm all num ber of param eters, called logsize and loglog growth rate. These param eters capturesom e universal characteristics ofm assive graphs. Furtherm re, from these paramfi ters, various properties of the graph can be derived. Forexam)(( for certain ranges of the paramJ?0CM we willcom?C7 the expected distribution of the sizes of the connectedcom onents which almJC surely occur with high probability. We will illustrate the consistency of our m del with the behavior of so m m ssive graphs derived from data in telecom unications. We will also discuss the threshold function, the giant com ponent, and the evolution of random graphs in thism del. 1