Results 1  10
of
44
A Survey of Optimization by Building and Using Probabilistic Models
 COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
, 1999
"... This paper summarizes the research on populationbased probabilistic search algorithms based on modeling promising solutions by estimating their probability distribution and using the constructed model to guide the further exploration of the search space. It settles the algorithms in the field of ge ..."
Abstract

Cited by 339 (90 self)
 Add to MetaCart
This paper summarizes the research on populationbased probabilistic search algorithms based on modeling promising solutions by estimating their probability distribution and using the constructed model to guide the further exploration of the search space. It settles the algorithms in the field of genetic and evolutionary computation where they have been originated. All methods are classified into a few classes according to the complexity of the class of models they use. Algorithms from each of these classes are briefly described and their strengths and weaknesses are discussed.
Escaping Hierarchical Traps with Competent Genetic Algorithms
 Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2001
, 2001
"... To solve hierarchical problems, one must be able to learn the linkage, represent partial solutions efficiently, and assure effective niching. We propose the hierarchical ... ..."
Abstract

Cited by 101 (49 self)
 Add to MetaCart
To solve hierarchical problems, one must be able to learn the linkage, represent partial solutions efficiently, and assure effective niching. We propose the hierarchical ...
Bayesian Optimization Algorithm: From Single Level to Hierarchy
, 2002
"... There are four primary goals of this dissertation. First, design a competent optimization algorithm capable of learning and exploiting appropriate problem decomposition by sampling and evaluating candidate solutions. Second, extend the proposed algorithm to enable the use of hierarchical decompositi ..."
Abstract

Cited by 101 (19 self)
 Add to MetaCart
(Show Context)
There are four primary goals of this dissertation. First, design a competent optimization algorithm capable of learning and exploiting appropriate problem decomposition by sampling and evaluating candidate solutions. Second, extend the proposed algorithm to enable the use of hierarchical decomposition as opposed to decomposition on only a single level. Third, design a class of difficult hierarchical problems that can be used to test the algorithms that attempt to exploit hierarchical decomposition. Fourth, test the developed algorithms on the designed class of problems and several realworld applications. The dissertation proposes the Bayesian optimization algorithm (BOA), which uses Bayesian networks to model the promising solutions found so far and sample new candidate solutions. BOA is theoretically and empirically shown to be capable of both learning a proper decomposition of the problem and exploiting the learned decomposition to ensure robust and scalable search for the optimum across a wide range of problems. The dissertation then identifies important features that must be incorporated into the basic BOA to solve problems that are not decomposable on a single level, but that can still be solved by decomposition over multiple levels of difficulty. Hierarchical
Evaluationrelaxation schemes for genetic and evolutionary algorithms
, 2002
"... Genetic and evolutionary algorithms have been increasingly applied to solve complex, large scale search problems with mixed success. Competent genetic algorithms have been proposed to solve hard problems quickly, reliably and accurately. They have rendered problems that were difficult to solve by th ..."
Abstract

Cited by 68 (27 self)
 Add to MetaCart
(Show Context)
Genetic and evolutionary algorithms have been increasingly applied to solve complex, large scale search problems with mixed success. Competent genetic algorithms have been proposed to solve hard problems quickly, reliably and accurately. They have rendered problems that were difficult to solve by the earlier GAs to be solvable, requiring only a subquadratic number of function evaluations. To facilitate solving largescale complex problems, and to further enhance the performance of competent GAs, various efficiencyenhancement techniques have been developed. This study investigates one such class of efficiencyenhancement technique called evaluation relaxation. Evaluationrelaxation schemes replace a highcost, lowerror fitness function with a lowcost, higherror fitness function. The error in fitness functions comes in two flavors: Bias and variance. The presence of bias and variance in fitness functions is considered in isolation and strategies for increasing efficiency in both cases are developed. Specifically, approaches for choosing between two fitness functions with either differing variance or differing bias values have been developed. This thesis also investigates fitness inheritance as an evaluation
Optimization by learning and simulation of Bayesian and Gaussian networks
, 1999
"... Estimation of Distribution Algorithms (EDA) constitute an example of stochastics heuristics based on populations of individuals every of which encode the possible solutions to the optimization problem. These populations of individuals evolve in succesive generations as the search progresses  organ ..."
Abstract

Cited by 56 (7 self)
 Add to MetaCart
Estimation of Distribution Algorithms (EDA) constitute an example of stochastics heuristics based on populations of individuals every of which encode the possible solutions to the optimization problem. These populations of individuals evolve in succesive generations as the search progresses  organized in the same way as most evolutionary computation heuristics. In opposition to most evolutionary computation paradigms which consider the crossing and mutation operators as essential tools to generate new populations, EDA replaces those operators by the estimation and simulation of the joint probability distribution of the selected individuals. In this work, after making a review of the different approaches based on EDA for problems of combinatorial optimization as well as for problems of optimization in continuous domains, we propose new approaches based on the theory of probabilistic graphical models to solve problems in both domains. More precisely, we propose to adapt algorit...
Continuous Iterated Density Estimation Evolutionary Algorithms Within The IDEA Framework
, 2000
"... In this paper, we formalize the notion of performing optimization by iterated density estimation evolutionary algorithms as the IDEA framework. These algorithms build probabilistic models and estimate probability densities based upon a selection of available points. We show how these probabili ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
In this paper, we formalize the notion of performing optimization by iterated density estimation evolutionary algorithms as the IDEA framework. These algorithms build probabilistic models and estimate probability densities based upon a selection of available points. We show how these probabilistic models can be built and used for dierent probability density functions within the IDEA framework. We put the emphasis on techniques for vectors of continuous random variables and thereby introduce new continuous evolutionary optimization algorithms.
Probabilistic Model Building and Competent Genetic Programming
 GENETIC PROGRAMMING THEORY AND PRACTISE, CHAPTER 13
, 2003
"... This paper describes a probabilistic model building genetic programming (PMBGP) developed based on the extended compact genetic algorithm (eCGA). Unlike traditional genetic programming, which use fixed recombination operators, the proposed PMBGA adapts linkages. The proposed algorithms... ..."
Abstract

Cited by 47 (10 self)
 Add to MetaCart
This paper describes a probabilistic model building genetic programming (PMBGP) developed based on the extended compact genetic algorithm (eCGA). Unlike traditional genetic programming, which use fixed recombination operators, the proposed PMBGA adapts linkages. The proposed algorithms...
Bayesian Optimization Algorithm, Decision Graphs, and Occam's Razor
 Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2001), 519–526. Also IlliGAL
, 2001
"... This paper discusses the use of various scoring metrics in the Bayesian optimization algorithm (BOA) which uses Bayesian networks to model promising solutions and generate the new ones. The use of decision graphs in Bayesian networks to improve the performance of the BOA is proposed. To favor simple ..."
Abstract

Cited by 42 (23 self)
 Add to MetaCart
This paper discusses the use of various scoring metrics in the Bayesian optimization algorithm (BOA) which uses Bayesian networks to model promising solutions and generate the new ones. The use of decision graphs in Bayesian networks to improve the performance of the BOA is proposed. To favor simple models, a complexity measure is incorporated into the BayesianDirichlet metric for Bayesian networks with decision graphs. The presented modi cations are compared on a number of interesting problems.
Expanding From Discrete To Continuous Estimation Of Distribution Algorithms: The IDEA
 In Parallel Problem Solving From Nature  PPSN VI
, 2000
"... . The direct application of statistics to stochastic optimization based on iterated density estimation has become more important and present in evolutionary computation over the last few years. The estimation of densities over selected samples and the sampling from the resulting distributions, i ..."
Abstract

Cited by 41 (9 self)
 Add to MetaCart
(Show Context)
. The direct application of statistics to stochastic optimization based on iterated density estimation has become more important and present in evolutionary computation over the last few years. The estimation of densities over selected samples and the sampling from the resulting distributions, is a combination of the recombination and mutation steps used in evolutionary algorithms. We introduce the framework named IDEA to formalize this notion. By combining continuous probability theory with techniques from existing algorithms, this framework allows us to dene new continuous evolutionary optimization algorithms. 1 Introduction Algorithms in evolutionary optimization guide their search through statistics based on a vector of samples, often called a population. By using this stochastic information, non{deterministic induction is performed in order to attempt to use the structure of the search space and thereby aid the search for the optimal solution. In order to perform induct...
Designing competent mutation operators via probabilistic model building of neighborhoods
 In Deb, K., & et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2004), Part II, LNCS 3103
, 2004
"... This paper presents a competent selectomutative genetic algorithm (GA), that adapts linkage and solves hard problems quickly, reliably, and accurately. A probabilistic model building process is used to automatically identify key building blocks (BBs) of the search problem. The mutation operator uses ..."
Abstract

Cited by 32 (20 self)
 Add to MetaCart
(Show Context)
This paper presents a competent selectomutative genetic algorithm (GA), that adapts linkage and solves hard problems quickly, reliably, and accurately. A probabilistic model building process is used to automatically identify key building blocks (BBs) of the search problem. The mutation operator uses the probabilistic model of linkage groups to find the best among competing building blocks. The competent selectomutative GA successfully solves additively separable problems of bounded difficulty, requiring only subquadratic number of function evaluations. The results show that for additively separable problems the probabilistic model building BBwise mutation scales as O(2 k m 1.5), and requires O ( √ k log m) less function evaluations than its selectorecombinative counterpart, confirming theoretical results reported elsewhere (Sastry & Goldberg, 2004). 1