Results 1  10
of
11
What color is your Jacobian? Graph coloring for computing derivatives
 SIAM REV
, 2005
"... Graph coloring has been employed since the 1980s to efficiently compute sparse Jacobian and Hessian matrices using either finite differences or automatic differentiation. Several coloring problems occur in this context, depending on whether the matrix is a Jacobian or a Hessian, and on the specific ..."
Abstract

Cited by 61 (11 self)
 Add to MetaCart
(Show Context)
Graph coloring has been employed since the 1980s to efficiently compute sparse Jacobian and Hessian matrices using either finite differences or automatic differentiation. Several coloring problems occur in this context, depending on whether the matrix is a Jacobian or a Hessian, and on the specifics of the computational techniques employed. We consider eight variant vertexcoloring problems here. This article begins with a gentle introduction to the problem of computing a sparse Jacobian, followed by an overview of the historical development of the research area. Then we present a unifying framework for the graph models of the variant matrixestimation problems. The framework is based upon the viewpoint that a partition of a matrixinto structurally orthogonal groups of columns corresponds to distance2 coloring an appropriate graph representation. The unified framework helps integrate earlier work and leads to fresh insights; enables the design of more efficient algorithms for many problems; leads to new algorithms for others; and eases the task of building graph models for new problems. We report computational results on two of the coloring problems to support our claims. Most of the methods for these problems treat a column or a row of a matrixas an atomic entity, and partition the columns or rows (or both). A brief review of methods that do not fit these criteria is provided. We also discuss results in discrete mathematics and theoretical computer science that intersect with the topics considered here.
Good and Semistrong Colorings of Oriented Planar Graphs
 INF. PROCESSING LETTERS 51
, 1994
"... A kcoloring of an oriented graph G = (V, A) is an assignment c of one of the colors 1; 2; : : : ; k to each vertex of the graph such that, for every arc (x; y) of G, c(x) 6= c(y). The kcoloring is good if for every arc (x; y) of G there is no arc (z; t) 2 A such that c(x) = c(t) and c(y) = c(z). ..."
Abstract

Cited by 53 (21 self)
 Add to MetaCart
A kcoloring of an oriented graph G = (V, A) is an assignment c of one of the colors 1; 2; : : : ; k to each vertex of the graph such that, for every arc (x; y) of G, c(x) 6= c(y). The kcoloring is good if for every arc (x; y) of G there is no arc (z; t) 2 A such that c(x) = c(t) and c(y) = c(z). A kcoloring is said to be semistrong if for every vertex x of G, c(z) 6= c(t) for any pair fz; tg of vertices of N \Gamma (x). We show that every oriented planar graph has a good coloring using at most 5 \Theta 2 4 colors and that every oriented planar graph G = (V; A) with d \Gamma (x) 3 for every x 2 V has a good and semistrong coloring using at most 4 \Theta 5 \Theta 2 4 colors.
Coloring with no 2colored P4's
, 2004
"... A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that
Acyclic colourings of planar graphs with large girth
 J. London Math. Soc
, 1999
"... A proper vertexcolouring of a graph is acyclic if there are no 2coloured cycles. It is known that every planar graph is acyclically 5colourable, and that there are planar graphs with acyclic chromatic number χ a � 5 and girth g � 4. It is proved here that a planar graph satisfies χ ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
(Show Context)
A proper vertexcolouring of a graph is acyclic if there are no 2coloured cycles. It is known that every planar graph is acyclically 5colourable, and that there are planar graphs with acyclic chromatic number χ a � 5 and girth g � 4. It is proved here that a planar graph satisfies χ
Acyclic, star and oriented colourings of graph subdivisions
 Discrete Math. Theoret. Comput. Sci
, 2005
"... Let G be a graph with chromatic number χ(G). A vertex colouring of G is acyclic if each bichromatic subgraph is a forest. A star colouring of G is an acyclic colouring in which each bichromatic subgraph is a star forest. Let χa(G) and χs(G) denote the acyclic and star chromatic numbers of G. This pa ..."
Abstract

Cited by 15 (6 self)
 Add to MetaCart
(Show Context)
Let G be a graph with chromatic number χ(G). A vertex colouring of G is acyclic if each bichromatic subgraph is a forest. A star colouring of G is an acyclic colouring in which each bichromatic subgraph is a star forest. Let χa(G) and χs(G) denote the acyclic and star chromatic numbers of G. This paper investigates acyclic and star colourings of subdivisions. Let G ′ be the graph obtained from G by subdividing each edge once. We prove that acyclic (respectively, star) colourings of G ′ correspond to vertex partitions of G in which each subgraph has small arboricity (chromatic index). It follows that χa(G ′), χs(G ′ ) and χ(G) are tied, in the sense that each is bounded by a function of the other. Moreover the binding functions that we establish are all tight. The oriented chromatic number − → χ (G) of an (undirected) graph G is the maximum, taken over all orientations D of G, of the minimum number of colours in a vertex colouring of D such that between any two colour classes, all edges have the same direction. We prove that − → χ (G ′ ) = χ(G) whenever χ(G) ≥ 9.
Colourings of the Cartesian product of graphs and multiplicative Sidon sets
, 2005
"... Let F be a family of connected bipartite graphs, each with at least three vertices. A proper vertex colouring of a graph G with no bichromatic subgraph in F is Ffree. The Ffree chromatic number χ(G, F) of a graph G is the minimum number of colours in an Ffree colouring of G. For appropriate choic ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Let F be a family of connected bipartite graphs, each with at least three vertices. A proper vertex colouring of a graph G with no bichromatic subgraph in F is Ffree. The Ffree chromatic number χ(G, F) of a graph G is the minimum number of colours in an Ffree colouring of G. For appropriate choices of F, several wellknown types of colourings fit into this framework, including acyclic colourings, star colourings, and distance2 colourings. This paper studies Ffree colourings of the cartesian product of graphs. Let H be the cartesian product of the graphs G1, G2,..., Gd. Our main result establishes an upper bound on the Ffree chromatic number of H in terms of the maximum Ffree chromatic number of the Gi and the following numbertheoretic concept. A set S of natural numbers is kmultiplicative Sidon if ax = by implies a = b and x = y whenever x,y ∈ S and 1 ≤ a, b ≤ k. Suppose that χ(Gi, F) ≤ k and S is a kmultiplicative Sidon set of cardinality d. We prove that χ(H, F) ≤ 1+2k·max S. We then prove that the maximum density of a kmultiplicative Sidon set is Θ(1/log k). It follows that χ(H, F) ≤ O(dk log k). We illustrate the method with numerous examples, some of which generalise or improve upon existing results in the literature.
Acyclic coloring of graphs with maximum degree five, http: //hal.archivesouvertes.fr/hal00375166/en
"... An acyclic kcoloring of a graph G is a proper vertex coloring of G which uses at most k colors such that the graph induced by the union of every two color classes is a forest. In this paper, we mainly prove that every 5connected graph with maximum degree five is acyclically 8colorable, improving ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
An acyclic kcoloring of a graph G is a proper vertex coloring of G which uses at most k colors such that the graph induced by the union of every two color classes is a forest. In this paper, we mainly prove that every 5connected graph with maximum degree five is acyclically 8colorable, improving partially [5]. hal00375166, version 1 8 Feb 2010 1
A Guide to the Discharging Method
, 2013
"... We provide a “howto” guide to the use and application of the Discharging Method. Our aim is not to exhaustively survey results that have been proved by this technique, but rather to demystify the technique and facilitate its wider use. Along the way, we present some new proofs and new problems. ..."
Abstract
 Add to MetaCart
We provide a “howto” guide to the use and application of the Discharging Method. Our aim is not to exhaustively survey results that have been proved by this technique, but rather to demystify the technique and facilitate its wider use. Along the way, we present some new proofs and new problems.