Results 1 - 10
of
897
On-line selection of discriminative tracking features
, 2003
"... This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the ..."
Abstract
-
Cited by 356 (5 self)
- Add to MetaCart
(Show Context)
This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the object. Given a set of seed features, we compute log likelihood ratios of class conditional sample densities from object and background to form a new set of candidate features tailored to the local object/background discrimination task. The two-class variance ratio is used to rank these new features according to how well they separate sample distributions of object and background pixels. This feature evaluation mechanism is embedded in a mean-shift tracking system that adap-tively selects the top-ranked discriminative features for tracking. Examples are presented that demonstrate how this method adapts to changing appearances of both tracked object and scene background. We note susceptibility of the variance ratio feature selection method to distraction by spatially correlated background clutter, and develop an additional approach that seeks to minimize the likelihood of distraction.
Ensemble Tracking
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2007
"... We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained on-line to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pi ..."
Abstract
-
Cited by 328 (2 self)
- Add to MetaCart
(Show Context)
We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained on-line to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pixels in the next frame as either belonging to the object or the background, giving a confidence map. The peak of the map, and hence the new position of the object, is found using mean shift. Temporal coherence is maintained by updating the ensemble with new weak classifiers that are trained on-line during tracking. We show a realization of this method and demonstrate it on several video sequences. 1
Detecting Moving Objects, Ghosts and Shadows in Video Streams
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2003
"... Abstract—Background subtraction methods are widely exploited for moving object detection in videos in many applications, such as traffic monitoring, human motion capture, and video surveillance. How to correctly and efficiently model and update the background model and how to deal with shadows are t ..."
Abstract
-
Cited by 248 (24 self)
- Add to MetaCart
(Show Context)
Abstract—Background subtraction methods are widely exploited for moving object detection in videos in many applications, such as traffic monitoring, human motion capture, and video surveillance. How to correctly and efficiently model and update the background model and how to deal with shadows are two of the most distinguishing and challenging aspects of such approaches. This work proposes a general-purpose method that combines statistical assumptions with the objectlevel knowledge of moving objects, apparent objects (ghosts), and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects, ghosts, and shadows are processed differently in order to supply an object-based selective update. The proposed approach exploits color information for both background subtraction and shadow detection to improve object segmentation and background update. The approach proves fast, flexible, and precise in terms of both pixel accuracy and reactivity to background changes. Index Terms—Background modeling, color segmentation, reactivity to changes, shadow detection, video surveillance, object-level knowledge. 1
Image Change Detection Algorithms: A Systematic Survey
- IEEE Transactions on Image Processing
, 2005
"... Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sensing, surveillance, medical diagnosis and treatment, civil infrastructure, and underwater sensing. T ..."
Abstract
-
Cited by 236 (3 self)
- Add to MetaCart
(Show Context)
Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sensing, surveillance, medical diagnosis and treatment, civil infrastructure, and underwater sensing. This paper presents a systematic survey of the common processing steps and core decision rules in modern change detection algorithms, including significance and hypothesis testing, predictive models, the shading model, and background modeling. We also discuss important preprocessing methods, approaches to enforcing the consistency of the change mask, and principles for evaluating and comparing the performance of change detection algorithms. It is hoped that our classification of algorithms into a relatively small number of categories will provide useful guidance to the algorithm designer.
An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection
, 2001
"... Real-time segmentation of moving regions in image sequences is a fundamental step in many vision systems including automated visual surveillance, human-machine interface, and very low-bandwidth telecommunications. A typical method is background subtraction. Many background models have been introduce ..."
Abstract
-
Cited by 225 (4 self)
- Add to MetaCart
Real-time segmentation of moving regions in image sequences is a fundamental step in many vision systems including automated visual surveillance, human-machine interface, and very low-bandwidth telecommunications. A typical method is background subtraction. Many background models have been introduced to deal with different problems. One of the successful solutions to these problems is to use a multi-colour background model per pixel proposed by Grimson et al [1,2,3]. However, the method suffers from slow learning at the beginning, especially in busy environments. In addition, it can not distinguish between moving shadows and moving objects. This paper presents a method which improves this adaptive background mixture model. By reinvestigating the update equations, we utilise different equations at different phases. This allows our system learn faster and more accurately as well as adapt effectively to changing environments. A shadow detection scheme is also introduced in this paper. It is based on a computational colour space that makes use of our background model. A comparison has been made between the two algorithms. The results show the speed of learning and the accuracy of the model using our update algorithm over the Grimson et al's tracker. When incorporate with the shadow detection, our method results in far better segmentation than that of Grimson et al.
Machine recognition of human activities: A survey
, 2008
"... The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the a ..."
Abstract
-
Cited by 218 (0 self)
- Add to MetaCart
(Show Context)
The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the activities occurring in the video. The analysis of human activities in videos is an area with increasingly important consequences from security and surveillance to entertainment and personal archiving. Several challenges at various levels of processing—robustness against errors in low-level processing, view and rate-invariant representations at midlevel processing and semantic representation of human activities at higher level processing—make this problem hard to solve. In this review paper, we present a comprehensive survey of efforts in the past couple of decades to address the problems of representation, recognition, and learning of human activities from video and related applications. We discuss the problem at two major levels of complexity: 1) “actions ” and 2) “activities. ” “Actions ” are characterized by simple motion patterns typically executed by a single human. “Activities ” are more complex and involve coordinated actions among a small number of humans. We will discuss several approaches and classify them according to their ability to handle varying degrees of complexity as interpreted above. We begin with a discussion of approaches to model the simplest of action classes known as atomic or primitive actions that do not require sophisticated dynamical modeling. Then, methods to model actions with more complex dynamics are discussed. The discussion then leads naturally to methods for higher level representation of complex activities.
Algorithms for Cooperative Multisensor Surveillance
- Surveillance, Proceedings of the IEEE
, 2001
"... This paper presents an overview of the issues and algorithms involved in creating this semiautonomous, multicamera surveillance system ..."
Abstract
-
Cited by 217 (8 self)
- Add to MetaCart
This paper presents an overview of the issues and algorithms involved in creating this semiautonomous, multicamera surveillance system
Detecting Unusual Activity in Video
, 2004
"... We present an unsupervised technique for detecting unusual activity in a large video set using many simple features. No complex activity models and no supervised feature selections are used. We divide the video into equal length segments and classify the extracted features into prototypes, from whic ..."
Abstract
-
Cited by 182 (0 self)
- Add to MetaCart
We present an unsupervised technique for detecting unusual activity in a large video set using many simple features. No complex activity models and no supervised feature selections are used. We divide the video into equal length segments and classify the extracted features into prototypes, from which a prototype--segment co-occurrence matrix is computed. Motivated by a similar problem in documentkeyword analysis, we seek a correspondence relationship between prototypes and video segments which satisfies the transitive closure constraint. We show that an important sub-family of correspondence functions can be reduced to co-embedding prototypes and segments to N-D Euclidean space. We prove that an efficient, globally optimal algorithm exists for the co-embedding problem. Experiments on various real-life videos have validated our approach.
Detecting Irregularities in Images and in Video
, 2007
"... We address the problem of detecting irregularities in visual data, e.g., detecting suspicious behaviors in video sequences, or identifying salient patterns in images. The term “irregular ” depends on the context in which the “regular ” or “valid ” are defined. Yet, it is not realistic to expect exp ..."
Abstract
-
Cited by 170 (1 self)
- Add to MetaCart
We address the problem of detecting irregularities in visual data, e.g., detecting suspicious behaviors in video sequences, or identifying salient patterns in images. The term “irregular ” depends on the context in which the “regular ” or “valid ” are defined. Yet, it is not realistic to expect explicit definition of all possible valid configurations for a given context. We pose the problem of determining the validity of visual data as a process of constructing a puzzle: We try to compose a new observed image region or a new video segment (“the query”) using chunks of data (“pieces of puzzle”) extracted from previous visual examples (“the database”). Regions in the observed data which can be composed using large contiguous chunks of data from the database are considered very likely, whereas regions in the observed data which cannot be composed from the database (or can be composed, but only using small fragmented pieces) are regarded as unlikely/suspicious. The problem is posed as an inference process in a probabilistic graphical model. We show applications of this approach to identifying saliency in images and video, for detecting suspicious behaviors and for automatic visual inspection for quality assurance.
Statistical Modeling of Complex Backgrounds for Foreground Object Detection
- IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2004
"... This paper addresses the problem of background modeling for foreground object detection in complex environments. A Bayesian framework that incorporates spectral, spatial, and temporal features to characterize the background appearance is proposed. Under this framework, the background is represented ..."
Abstract
-
Cited by 135 (3 self)
- Add to MetaCart
This paper addresses the problem of background modeling for foreground object detection in complex environments. A Bayesian framework that incorporates spectral, spatial, and temporal features to characterize the background appearance is proposed. Under this framework, the background is represented by the most significant and frequent features, i.e., the principal features, at each pixel. A Bayes decision rule is derived for background and foreground classification based on the statistics of principal features. Principal feature representation for both the static and dynamic background pixels is investigated. A novel learning method is proposed to adapt to both gradual and sudden "once-off" background changes. The convergence of the learning process is analyzed and a formula to select a proper learning rate is derived. Under the proposed framework, a novel algorithm for detecting foreground objects from complex environments is then established. It consists of change detection, change classification, foreground segmentation, and background maintenance. Experiments were conducted on image sequences containing targets of interest in a variety of environments, e.g., offices, public buildings, subway stations, campuses, parking lots, airports, and sidewalks. Good results of foreground detection were obtained. Quantitative evaluation and comparison with the existing method show that the proposed method provides much improved results.