Results 1 - 10
of
41
Yahoo! Learning to Rank Challenge Overview
, 2011
"... Learning to rank for information retrieval has gained a lot of interest in the recent years but there is a lack for large real-world datasets to benchmark algorithms. That led us to publicly release two datasets used internally at Yahoo! for learning the web search ranking function. To promote these ..."
Abstract
-
Cited by 72 (6 self)
- Add to MetaCart
Learning to rank for information retrieval has gained a lot of interest in the recent years but there is a lack for large real-world datasets to benchmark algorithms. That led us to publicly release two datasets used internally at Yahoo! for learning the web search ranking function. To promote these datasets and foster the development of state-of-the-art learning to rank algorithms, we organized the Yahoo! Learning to Rank Challenge in spring 2010. This paper provides an overview and an analysis of this challenge, along with a detailed description of the released datasets.
Time is of the essence: improving recency ranking using twitter data
- In WWW
, 2010
"... Realtime web search refers to the retrieval of very fresh content which is in high demand. An effective portal web search engine must support a variety of search needs, including realtime web search. However, supporting realtime web search introduces two challenges not encountered in non-realtime we ..."
Abstract
-
Cited by 67 (6 self)
- Add to MetaCart
(Show Context)
Realtime web search refers to the retrieval of very fresh content which is in high demand. An effective portal web search engine must support a variety of search needs, including realtime web search. However, supporting realtime web search introduces two challenges not encountered in non-realtime web search: quickly crawling relevant content and ranking documents with impoverished link and click information. In this paper, we advocate the use of realtime micro-blogging data for addressing both of these problems. We propose a method to use the micro-blogging data stream to detect fresh URLs. We also use micro-blogging data to compute novel and effective features for ranking fresh URLs. We demonstrate these methods improve effective of the portal web search engine for realtime web search.
Understanding Temporal Query Dynamics
"... Web search is strongly influenced by time. The queries people issue change over time, with some queries occasionally spiking in popularity (e.g., earthquake) and others remaining relatively constant (e.g., youtube). Likewise, the documents indexed by a search engine change, with some documents alway ..."
Abstract
-
Cited by 45 (3 self)
- Add to MetaCart
(Show Context)
Web search is strongly influenced by time. The queries people issue change over time, with some queries occasionally spiking in popularity (e.g., earthquake) and others remaining relatively constant (e.g., youtube). Likewise, the documents indexed by a search engine change, with some documents always being about a particular query (e.g., the Wikipedia page on earthquakes is about the query earthquake) and others being about the query only at a particular point in time (e.g., the New York Times is only about earthquakes following a major seismic activity). The relationship between documents and queries can also change as people’s intent changes (e.g., people sought different content for the query earthquake before the Haitian earthquake than they did after). In this paper, we explore how queries, their associated documents, and the query intent change over the course of 10 weeks by analyzing query log data, a daily Web crawl, and periodic human relevance judgments. We identify several interesting features by which changes to query popularity can be classified, and show that presence of these features, when accompanied by changes in result content, can be a good indicator of change in query intent.
Learning to rank for freshness and relevance
- In SIGIR
"... Freshness of results is important in modern web search. Failing to recognize the temporal aspect of a query can negatively affect the user experience, and make the search engine appear stale. While freshness and relevance can be closely related for some topics (e.g., news queries), they are more ind ..."
Abstract
-
Cited by 17 (3 self)
- Add to MetaCart
(Show Context)
Freshness of results is important in modern web search. Failing to recognize the temporal aspect of a query can negatively affect the user experience, and make the search engine appear stale. While freshness and relevance can be closely related for some topics (e.g., news queries), they are more independent in others (e.g., time insensitive queries). Therefore, optimizing one criterion does not necessarily improve the other, and can even do harm in some cases. We propose a machine-learning framework for simultaneously optimizing freshness and relevance, in which the trade-off is automatically adaptive to query temporal characteristics. We start by illustrating different temporal characteristics of queries, and the features that can be used for capturing these properties. We then introduce our supervised framework that leverages the temporal profile of queries (inferred from pseudo-feedback documents) along with the other ranking features to improve both freshness and relevance of search results. Our experiments on a large archival web corpus demonstrate the efficacy of our techniques.
Future directions in learning to rank
, 2011
"... The results of the learning to rank challenge showed that the quality of the predictions from the top competitors are very close from each other. This raises a question: is learning to rank a solved problem? On the on hand, it is likely that only small incremental progress can be made in the “core” ..."
Abstract
-
Cited by 16 (1 self)
- Add to MetaCart
The results of the learning to rank challenge showed that the quality of the predictions from the top competitors are very close from each other. This raises a question: is learning to rank a solved problem? On the on hand, it is likely that only small incremental progress can be made in the “core” and traditional problematics of learning to rank. The challenge was set in this standard learning to rank scenario: optimize a ranking measure on a test set. But on the other hand, there are a lot of related questions and settings in learning to rank that have not been yet fully explored. We review some of them in this paper and hope that researchers interested in learning to rank will try to answer these challenging and exciting research questions. 1. Learning Theory for Ranking Many learning to rank algorithms have been shown effective through benchmark experiments. However, sometimes benchmark experiments are not as reliable as expected due to the small scales of the training and test data. In this situation, a theory is needed to guarantee the performance of an algorithm on infinite unseen data.
Centrality Metric for Dynamic Networks
- in Proceedings of KDD workshop on Mining and Learning with Graphs (MLG
, 2010
"... Centrality is an important notion in network analysis and is used to measure the degree to which network structure contributes to the importance of a node in a network. While many different centrality measures exist, most of them apply to static networks. Most networks, on the other hand, are dynami ..."
Abstract
-
Cited by 15 (1 self)
- Add to MetaCart
(Show Context)
Centrality is an important notion in network analysis and is used to measure the degree to which network structure contributes to the importance of a node in a network. While many different centrality measures exist, most of them apply to static networks. Most networks, on the other hand, are dynamic in nature, evolving over time through the addition or deletion of nodes and edges. A popular approach to analyzing such networks represents them by a static network that aggregates all edges observed over some time period. This approach, however, under or overestimates centrality of some nodes. We address this problem by introducing a novel centrality metric for dynamic network analysis. This metric exploits an intuition that in order for one node in a dynamic network to influence another over some period of time, there must exist a path that connects the source and destination nodes through intermediaries at different times. We demonstrate on an example network that the proposed metric leads to a very different ranking than analysis of an equivalent static network. We use dynamic centrality to study a dynamic citations network and contrast results to those reached by static network analysis.
Modeling and Predicting Behavioral Dynamics on the Web
, 2012
"... User behavior on the Web changes over time. For example, the queries that people issue to search engines, and the underlying informational goals behind the queries vary over time. In this paper, we examine how to model and predict this temporal user behavior. We develop a temporal modeling framework ..."
Abstract
-
Cited by 14 (1 self)
- Add to MetaCart
(Show Context)
User behavior on the Web changes over time. For example, the queries that people issue to search engines, and the underlying informational goals behind the queries vary over time. In this paper, we examine how to model and predict this temporal user behavior. We develop a temporal modeling framework adapted from physics and signal processing that can be used to predict time-varying user behavior using smoothing and trends. We also explore other dynamics of Web behaviors, such as the detection of periodicities and surprises. We develop a learning procedure that can be used to construct models of users ’ activities based on features of current and historical behaviors. The results of experiments indicate that by using our framework to predict user behavior, we can achieve significant improvements in prediction compared to baseline models that weight historical evidence the same for all queries. We also develop a novel learning algorithm that explicitly learns when to apply a given prediction model among a set of such models. Our improved temporal modeling of user behavior can be used to enhance query suggestions, crawling policies, and result ranking.
Online learning for recency search ranking using real-time user feedback
- In CIKM
, 2010
"... ABSTRACT Traditional machine-learned ranking algorithms for web search are trained in batch mode, which assume static relevance of documents for a given query. Although such a batch-learning framework has been tremendously successful in commercial search engines, in scenarios where relevance of doc ..."
Abstract
-
Cited by 10 (7 self)
- Add to MetaCart
(Show Context)
ABSTRACT Traditional machine-learned ranking algorithms for web search are trained in batch mode, which assume static relevance of documents for a given query. Although such a batch-learning framework has been tremendously successful in commercial search engines, in scenarios where relevance of documents to a query changes over time, such as ranking recent documents for a breaking news query, the batch-learned ranking functions do have limitations. Users' real-time click feedback becomes a better and timely proxy for the varying relevance of documents rather than the editorial judgments provided by human editors. In this paper, we propose an online learning algorithm that can quickly learn the best reranking of the top portion of the original ranked list based on real-time users' click feedback. In order to devise our algorithm and evaluate it accurately, we collected exploration bucket data that removes positional biases on clicks on the documents for recency-classified queries. Our initial experimental result shows that our scheme is more capable of quickly adjusting the ranking to track the varying relevance of documents reflected in the click feedback, compared to batch-trained ranking functions.
Counterfactual estimation and optimization of click metrics for search engines.
, 2014
"... ABSTRACT Optimizing an interactive system against a predefined online metric is particularly challenging, especially when the metric is computed from user feedback such as clicks and payments. The key challenge is the counterfactual nature: in the case of Web search, any change to a component of th ..."
Abstract
-
Cited by 6 (0 self)
- Add to MetaCart
(Show Context)
ABSTRACT Optimizing an interactive system against a predefined online metric is particularly challenging, especially when the metric is computed from user feedback such as clicks and payments. The key challenge is the counterfactual nature: in the case of Web search, any change to a component of the search engine may result in a different search result page for the same query, but we normally cannot infer reliably from search log how users would react to the new result page. Consequently, it appears impossible to accurately estimate online metrics that depend on user feedback, unless the new engine is actually run to serve live users and compared with a baseline in a controlled experiment. This approach, while valid and successful, is unfortunately expensive and time-consuming. In this paper, we propose to address this problem using causal inference techniques, under the contextual-bandit framework. This approach effectively allows one to run potentially many online experiments offline from search log, making it possible to estimate and optimize online metrics quickly and inexpensively. Focusing on an important component in a commercial search engine, we show how these ideas can be instantiated and applied, and obtain very promising results that suggest the wide applicability of these techniques.
When Relevance is not Enough: Promoting Diversity and Freshness in Personalized Question Recommendation
"... What makes a good question recommendation system for community question-answering sites? First, to maintain the health of the ecosystem, it needs to be designed around answerers, rather than exclusively for askers. Next, it needs to scale to many questions and users, and be fast enough to route a ne ..."
Abstract
-
Cited by 5 (1 self)
- Add to MetaCart
(Show Context)
What makes a good question recommendation system for community question-answering sites? First, to maintain the health of the ecosystem, it needs to be designed around answerers, rather than exclusively for askers. Next, it needs to scale to many questions and users, and be fast enough to route a newly-posted question to potential answerers within the few minutes before the asker’s patience runs out. It also needs to show each answerer questions that are relevant to his or her interests. We have designed and built such a system for Yahoo! Answers, but realized, when testing it with live users, that it was not enough. We found that those drawing-board requirements fail to capture user’s interests. The feature that they really missed was diversity. In other words, showing them just the main topics they had previously expressed interest in was simply too dull. Adding the spice of topics slightly outside the core of their past activities significantly improved engagement. We conducted a large-scale online experiment in production in Yahoo! Answers that showed that recommendations driven by relevance alone perform worse than a control group without question recommendations, which is the current behavior. However, an algorithm promoting both diversity and freshness improved the number of answers by 17%, daily session length by 10%, and had a significant positive impact on peripheral activities such as voting.