Results 1  10
of
370
Correlation Clustering
 MACHINE LEARNING
, 2002
"... We consider the following clustering problem: we have a complete graph on # vertices (items), where each edge ### ## is labeled either # or depending on whether # and # have been deemed to be similar or different. The goal is to produce a partition of the vertices (a clustering) that agrees as mu ..."
Abstract

Cited by 332 (4 self)
 Add to MetaCart
(Show Context)
We consider the following clustering problem: we have a complete graph on # vertices (items), where each edge ### ## is labeled either # or depending on whether # and # have been deemed to be similar or different. The goal is to produce a partition of the vertices (a clustering) that agrees as much as possible with the edge labels. That is, we want a clustering that maximizes the number of # edges within clusters, plus the number of edges between clusters (equivalently, minimizes the number of disagreements: the number of edges inside clusters plus the number of # edges between clusters). This formulation is motivated from a document clustering problem in which one has a pairwise similarity function # learned from past data, and the goal is to partition the current set of documents in a way that correlates with # as much as possible; it can also be viewed as a kind of "agnostic learning" problem. An interesting
On Clusterings: Good, Bad and Spectral
, 2003
"... We motivate and develop a natural bicriteria measure for assessing the quality of a clustering which avoids the drawbacks of existing measures. A simple recursive heuristic is shown to have polylogarithmic worstcase guarantees under the new measure. The main result of the paper is the analysis of ..."
Abstract

Cited by 332 (11 self)
 Add to MetaCart
We motivate and develop a natural bicriteria measure for assessing the quality of a clustering which avoids the drawbacks of existing measures. A simple recursive heuristic is shown to have polylogarithmic worstcase guarantees under the new measure. The main result of the paper is the analysis of a popular spectral algorithm. One variant of spectral clustering turns out to have effective worstcase guarantees; another finds a "good" clustering, if one exists.
A constantfactor approximation algorithm for the kmedian problem
 In Proceedings of the 31st Annual ACM Symposium on Theory of Computing
, 1999
"... We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are re ..."
Abstract

Cited by 249 (13 self)
 Add to MetaCart
(Show Context)
We present the first constantfactor approximation algorithm for the metric kmedian problem. The kmedian problem is one of the most wellstudied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are relatively close with respect to some measure. For the metric kmedian problem, we are given n points in a metric space. We select k of these to be cluster centers, and then assign each point to its closest selected center. If point j is assigned to a center i, the cost incurred is proportional to the distance between i and j. The goal is to select the k centers that minimize the sum of the assignment costs. We give a 6 2 3approximation algorithm for this problem. This improves upon the best previously known result of O(log k log log k), which was obtained by refining and derandomizing a randomized O(log n log log n)approximation algorithm of Bartal. 1
Improved Combinatorial Algorithms for the Facility Location and kMedian Problems
 In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science
, 1999
"... We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 ..."
Abstract

Cited by 225 (12 self)
 Add to MetaCart
(Show Context)
We present improved combinatorial approximation algorithms for the uncapacitated facility location and kmedian problems. Two central ideas in most of our results are cost scaling and greedy improvement. We present a simple greedy local search algorithm which achieves an approximation ratio of 2:414 + in ~ O(n 2 =) time. This also yields a bicriteria approximation tradeoff of (1 +; 1+ 2=) for facility cost versus service cost which is better than previously known tradeoffs and close to the best possible. Combining greedy improvement and cost scaling with a recent primal dual algorithm for facility location due to Jain and Vazirani, we get an approximation ratio of 1.853 in ~ O(n 3 ) time. This is already very close to the approximation guarantee of the best known algorithm which is LPbased. Further, combined with the best known LPbased algorithm for facility location, we get a very slight improvement in the approximation factor for facility location, achieving 1.728....
Incremental Clustering and Dynamic Information Retrieval
, 1997
"... Motivated by applications such as document and image classification in information retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a model called incremental clustering which is based on a careful analysis of the requirements of the information retri ..."
Abstract

Cited by 191 (4 self)
 Add to MetaCart
(Show Context)
Motivated by applications such as document and image classification in information retrieval, we consider the problem of clustering dynamic point sets in a metric space. We propose a model called incremental clustering which is based on a careful analysis of the requirements of the information retrieval application, and which should also be useful in other applications. The goal is to efficiently maintain clusters of small diameter as new points are inserted. We analyze several natural greedy algorithms and demonstrate that they perform poorly. We propose new deterministic and randomized incremental clustering algorithms which have a provably good performance. We complement our positive results with lower bounds on the performance of incremental algorithms. Finally, we consider the dual clustering problem where the clusters are of fixed diameter, and the goal is to minimize the number of clusters.
Clustering data streams: Theory and practice
 IEEE TKDE
, 2003
"... The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little memory, ..."
Abstract

Cited by 157 (5 self)
 Add to MetaCart
(Show Context)
The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and clickstreams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little memory, is crucial. We describe such a streaming algorithm that effectively clusters large data streams. We also provide empirical evidence of the algorithm’s performance on synthetic and real data streams.
Influence Sets Based on Reverse Nearest Neighbor Queries
 In SIGMOD
, 2000
"... Inherent in the operation of many decision support and continuous referral systems is the notion of the "influence" of a data point on the database. This notion arises in examples such as finding the set of customers affected by the opening of a new store outlet location, notifying the sub ..."
Abstract

Cited by 148 (1 self)
 Add to MetaCart
Inherent in the operation of many decision support and continuous referral systems is the notion of the "influence" of a data point on the database. This notion arises in examples such as finding the set of customers affected by the opening of a new store outlet location, notifying the subset of subscribers to a digital library who will find a newly added document most relevant, etc. Standard approaches to determining the influence set of a data point involve range searching and nearest neighbor queries. In this paper, we formalize a novel notion of influence based on reverse neighbor queries and its variants. Since the nearest neighbor relation is not symmetric, the set of points that are closest to a query point (i.e., the nearest neighbors) differs from the set of points that have the query point as their nearest neighbor (called the reverse nearest neighbors). Influence sets based on reverse nearest neighbor (RNN) queries seem to capture the intuitive notion of influence from our ...
Greedy Facility Location Algorithms analyzed using Dual Fitting with FactorRevealing LP
 Journal of the ACM
, 2001
"... We present a natural greedy algorithm for the metric uncapacitated facility location problem and use the method of dual fitting to analyze its approximation ratio, which turns out to be 1.861. The running time of our algorithm is O(m log m), where m is the total number of edges in the underlying c ..."
Abstract

Cited by 146 (12 self)
 Add to MetaCart
(Show Context)
We present a natural greedy algorithm for the metric uncapacitated facility location problem and use the method of dual fitting to analyze its approximation ratio, which turns out to be 1.861. The running time of our algorithm is O(m log m), where m is the total number of edges in the underlying complete bipartite graph between cities and facilities. We use our algorithm to improve recent results for some variants of the problem, such as the fault tolerant and outlier versions. In addition, we introduce a new variant which can be seen as a special case of the concave cost version of this problem.