Results 1  10
of
89
Approximation metrics for discrete and continuous systems
 IEEE Transactions on Automatic Control
, 2005
"... Established system relationships for discrete systems, such as language inclusion, simulation, and bisimulation, require system observations to be identical. When interacting with the physical world, modeled by continuous or hybrid systems, exact relationships are restrictive and not robust. In thi ..."
Abstract

Cited by 105 (16 self)
 Add to MetaCart
(Show Context)
Established system relationships for discrete systems, such as language inclusion, simulation, and bisimulation, require system observations to be identical. When interacting with the physical world, modeled by continuous or hybrid systems, exact relationships are restrictive and not robust. In this paper, we develop the first framework of system approximation that applies to both discrete and continuous systems by developing notions of approximate language inclusion, approximate simulation, and approximate bisimulation relations. We define a hierarchy of approximation pseudometrics between two systems that quantify the quality of the approximation, and capture the established exact relationships as zero sections. Our approximation framework is compositional for a synchronous composition operator. Algorithms are developed for computing the proposed pseudometrics, both exactly and approximately. The exact algorithms require the generalization of the fixed point algorithms for computing simulation and bisimulation relations, or dually, the solution of a static game whose cost is the socalled branching distance between the systems. Approximations for the pseudometrics can be obtained by considering Lyapunovlike functions called simulation and bisimulation functions. We illustrate our approximation framework in reducing the complexity of safety verification problems for both deterministic and nondeterministic continuous systems.
Computing differential invariants of hybrid systems as fixedpoints
, 2008
"... Abstract. We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations whose righthand sides are polynomials in the state variables. In order to verify nontrivial systems without solving their differential equations and without numerical errors, ..."
Abstract

Cited by 58 (21 self)
 Add to MetaCart
Abstract. We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differential equations whose righthand sides are polynomials in the state variables. In order to verify nontrivial systems without solving their differential equations and without numerical errors, we use a continuous generalization of induction, for which our algorithm computes the required differential invariants. As a means for combining local differential invariants into global system invariants in a sound way, our fixedpoint algorithm works with a compositional verification logic for hybrid systems. To improve the verification power, we further introduce a saturation procedure that refines the system dynamics successively with differential invariants until safety becomes provable. By complementing our symbolic verification algorithm with a robust version of numerical falsification, we obtain a fast and sound verification procedure. We verify roundabout maneuvers in air traffic management and collision avoidance in train control.
Verification using simulation
 In: Hybrid Systems: Computation and Control (HSCC). Volume 3927 of LNCS., Springer (2006) 272 – 286
, 2006
"... Abstract. Verification and simulation have always been complementary, if not competing, approaches to system design. In this paper, we present a novel method for socalled metric transition systems that bridges the gap between verification and simulation, enabling system verification using a finite ..."
Abstract

Cited by 44 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Verification and simulation have always been complementary, if not competing, approaches to system design. In this paper, we present a novel method for socalled metric transition systems that bridges the gap between verification and simulation, enabling system verification using a finite number of simulations. The existence of metrics on the system state and observation spaces, which is natural for continuous systems, allows us to capitalize on the recently developed framework of approximate bisimulations, and infer the behavior of neighborhood of system trajectories around a simulated trajectory. For nondeterministic linear systems that are robustly safe or robustly unsafe, we provide not only a completeness result but also an upper bound on the number of simulations required as a function of the distance between the reachable set and the unsafe set. Our framework is the first simulationbased verification method that enjoys completeness for infinitestate systems. The complexity is low for robustly safe or robustly unsafe systems, and increases for nonrobust problems. This provides strong evidence that robustness dramatically impacts the complexity of system verification and design. 1
Robust Test Generation and Coverage for Hybrid Systems
, 2007
"... Testing is an important tool for validation of the system design and its implementation. Modelbased test generation allows to systematically ascertain whether the system meets its design requirements, particularly the safety and correctness requirements of the system. In this paper, we develop a fr ..."
Abstract

Cited by 42 (13 self)
 Add to MetaCart
(Show Context)
Testing is an important tool for validation of the system design and its implementation. Modelbased test generation allows to systematically ascertain whether the system meets its design requirements, particularly the safety and correctness requirements of the system. In this paper, we develop a framework for generating tests from hybrid systems’ models. The core idea of the framework is to develop a notion of robust test, where one nominal test can be guaranteed to yield the same qualitative behavior with any other test that is close to it. Our approach offers three distinct advantages. 1) It allows for computing and formally quantifying the robustness of some properties, 2) it establishes a method to quantify the test coverage for every test case, and 3) the procedure is parallelizable and therefore, very scalable. We demonstrate our framework by generating tests for a navigation benchmark application.
DifferentialAlgebraic Dynamic Logic for DifferentialAlgebraic Programs
"... Abstract. We generalise dynamic logic to a logic for differentialalgebraic programs, i.e., discrete programs augmented with firstorder differentialalgebraic formulas as continuous evolution constraints in addition to firstorder discrete jump formulas. These programs characterise interacting discr ..."
Abstract

Cited by 41 (28 self)
 Add to MetaCart
(Show Context)
Abstract. We generalise dynamic logic to a logic for differentialalgebraic programs, i.e., discrete programs augmented with firstorder differentialalgebraic formulas as continuous evolution constraints in addition to firstorder discrete jump formulas. These programs characterise interacting discrete and continuous dynamics of hybrid systems elegantly and uniformly. For our logic, we introduce a calculus over real arithmetic with discrete induction and a new differential induction with which differentialalgebraic programs can be verified by exploiting their differential constraints algebraically without having to solve them. We develop the theory of differential induction and differential refinement and analyse their deductive power. As a case study, we present parametric tangential roundabout maneuvers in air traffic control and prove collision avoidance in our calculus.
ConstraintBased Approach for Analysis of Hybrid Systems
 of Lecture Notes in Computer Science
, 2008
"... Abstract. This paper presents a constraintbased technique for discovering a rich class of inductive invariants (disjunctions of polynomial inequalities of bounded degree) for verification of hybrid systems. The key idea is to introduce a template for the unknown invariants and then translate the ve ..."
Abstract

Cited by 41 (10 self)
 Add to MetaCart
(Show Context)
Abstract. This paper presents a constraintbased technique for discovering a rich class of inductive invariants (disjunctions of polynomial inequalities of bounded degree) for verification of hybrid systems. The key idea is to introduce a template for the unknown invariants and then translate the verification condition of the hybrid system into an ∃ ∀ constraint over the template unknowns (which are variables over reals) by making use of the fact that vector fields must point inwards at the boundary. These constraints are then solved using Farkas lemma. We also present preliminary experimental results that demonstrate the feasibility of our approach of solving the ∃ ∀ constraints generated from models of realworld hybrid systems. 1
Formal verification of hybrid systems
, 2011
"... In formal verification, a designer first constructs a model, with mathematically precise semantics, of the system under design, and performs extensive analysis with respect to correctness requirements. The appropriate mathematical model for embedded control systems is hybrid systems that combines th ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
(Show Context)
In formal verification, a designer first constructs a model, with mathematically precise semantics, of the system under design, and performs extensive analysis with respect to correctness requirements. The appropriate mathematical model for embedded control systems is hybrid systems that combines the traditional statemachine based models for discrete control with classical differentialequations based models for continuously evolving physical activities. In this article, we briefly review selected existing approaches to formal verification of hybrid systems, along with directions for future research.
Recent progress in continuous and hybrid reachability analysis
 In Proc. IEEE International Symposium on ComputerAided Control Systems Design. IEEE Computer
, 2006
"... Abstract — Setbased reachability analysis computes all possible states a system may attain, and in this sense provides knowledge about the system with a completeness, or coverage, that a finite number of simulation runs can not deliver. Due to its inherent complexity, the application of reachabilit ..."
Abstract

Cited by 30 (1 self)
 Add to MetaCart
(Show Context)
Abstract — Setbased reachability analysis computes all possible states a system may attain, and in this sense provides knowledge about the system with a completeness, or coverage, that a finite number of simulation runs can not deliver. Due to its inherent complexity, the application of reachability analysis has been limited so far to simple systems, both in the continuous and the hybrid domain. In this paper we present recent advances that, in combination, significantly improve this applicability, and allow us to find better balance between computational cost and accuracy. The presentation covers, in a unified manner, a variety of methods handling increasingly complex types of continuous dynamics (constant derivative, linear, nonlinear). The improvements include new geometrical objects for representing sets, new approximation schemes, and more flexible combinations of graphsearch algorithm and partition refinement. We report briefly some preliminary experiments that have enabled the analysis of systems previously beyond reach. I.
Abstractions for Hybrid Systems
 Computer Science Laboratory, SRI International, Menlo Park, CA
, 2004
"... Abstract. We present a procedure for constructing sound finitestate discrete abstractions of hybrid systems. This procedure uses ideas from predicate abstraction to abstract the discrete dynamics and qualitative reasoning to abstract the continuous dynamics of the hybrid system. It relies on the ab ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
(Show Context)
Abstract. We present a procedure for constructing sound finitestate discrete abstractions of hybrid systems. This procedure uses ideas from predicate abstraction to abstract the discrete dynamics and qualitative reasoning to abstract the continuous dynamics of the hybrid system. It relies on the ability to decide satisfiability of quantifierfree formulas in some theory rich enough to encode the hybrid system. We characterize the sets of predicates that can be used to create high quality abstractions and we present new approaches to discover such useful sets of predicates. Under certain assumptions, the abstraction procedure can be applied compositionally to abstract a hybrid system described as a composition of two hybrid automata. We show that the constructed abstractions are always sound, but are relatively complete only under certain assumptions.