Results 1  10
of
44
Scaling limit for the spacetime covariance of the stationary totally asymmetric simple exclusion process
 Comm. Math. Phys
"... The totally asymmetric simple exclusion process (TASEP) on the onedimensional lattice with the Bernoulli ρ measure as initial conditions, 0 < ρ < 1, is stationary in space and time. Let Nt(j) be the number of particles which have crossed the bond from j to j + 1 during the time span [0,t]. Fo ..."
Abstract

Cited by 79 (27 self)
 Add to MetaCart
(Show Context)
The totally asymmetric simple exclusion process (TASEP) on the onedimensional lattice with the Bernoulli ρ measure as initial conditions, 0 < ρ < 1, is stationary in space and time. Let Nt(j) be the number of particles which have crossed the bond from j to j + 1 during the time span [0,t]. For j = (1 − 2ρ)t + 2w(ρ(1 − ρ)) 1/3 t 2/3 we prove that the fluctuations of Nt(j) for large t are of order t 1/3 and we determine the limiting distribution function Fw(s), which is a generalization of the GUE TracyWidom distribution. The family Fw(s) of distribution functions have been obtained before by Baik and Rains in the context of the PNG model with boundary sources, which requires the asymptotics of a RiemannHilbert problem. In our work we arrive at Fw(s) through the asymptotics of a Fredholm determinant. Fw(s) is simply related to the scaling function for the spacetime covariance of the stationary TASEP, equivalently to the asymptotic transition
Large time asymptotics of growth models on spacelike paths I: PushASEP
, 2008
"... We consider a new interacting particle system on the onedimensional lattice that interpolates between TASEP and Toom’s model: A particle cannot jump to the right if the neighboring site is occupied, and when jumping to the left it simply pushes all the neighbors that block its way. We prove that for ..."
Abstract

Cited by 71 (32 self)
 Add to MetaCart
(Show Context)
We consider a new interacting particle system on the onedimensional lattice that interpolates between TASEP and Toom’s model: A particle cannot jump to the right if the neighboring site is occupied, and when jumping to the left it simply pushes all the neighbors that block its way. We prove that for flat and step initial conditions, the large time fluctuations of the height function of the associated growth model along any spacelike path are described by the Airy1 and Airy2 processes. This includes fluctuations of the height profile for a fixed time and fluctuations of a tagged particle’s trajectory as special cases.
Fluctuation properties of the TASEP with periodic initial configuration
, 2006
"... We consider the joint distributions of particle positions for the continuous time totally asymmetric simple exclusion process (TASEP). They are expressed as Fredholm determinants with a kernel defining a signed determinantal point process. We then consider certain periodic initial conditions and det ..."
Abstract

Cited by 67 (34 self)
 Add to MetaCart
(Show Context)
We consider the joint distributions of particle positions for the continuous time totally asymmetric simple exclusion process (TASEP). They are expressed as Fredholm determinants with a kernel defining a signed determinantal point process. We then consider certain periodic initial conditions and determine the kernel in the scaling limit. This result has been announced first in a letter by one of us [27] and here we provide a selfcontained derivation. Connections to last passage directed percolation and random matrices are also briefly discussed.
Orthogonal polynomial ensembles in probability theory
 Prob. Surv
, 2005
"... Abstract: We survey a number of models from physics, statistical mechanics, probability theory and combinatorics, which are each described in terms of an orthogonal polynomial ensemble. The most prominent example is apparently the Hermite ensemble, the eigenvalue distribution of the Gaussian Unitary ..."
Abstract

Cited by 62 (1 self)
 Add to MetaCart
(Show Context)
Abstract: We survey a number of models from physics, statistical mechanics, probability theory and combinatorics, which are each described in terms of an orthogonal polynomial ensemble. The most prominent example is apparently the Hermite ensemble, the eigenvalue distribution of the Gaussian Unitary Ensemble (GUE), and other wellknown ensembles known in random matrix theory like the Laguerre ensemble for the spectrum of Wishart matrices. In recent years, a number of further interesting models were found to lead to orthogonal polynomial ensembles, among which the corner growth model, directed last passage percolation, the PNG droplet, noncolliding random processes, the length of the longest increasing subsequence of a random permutation, and others. Much attention has been paid to universal classes of asymptotic behaviors of these models in the limit of large particle numbers, in particular the spacings between the particles and the fluctuation behavior of the largest particle. Computer simulations suggest that the connections go even farther
Fluctuations of the onedimensional polynuclear growth model in half space
 J. STAT. PHYS
, 2004
"... We consider the multipoint equal time height fluctuations of a onedimensional polynuclear growth model in a half space. For special values of the nucleation rate at the origin, the multilayer version of the model is reduced to a determinantal process, for which the asymptotics can be analyzed. In ..."
Abstract

Cited by 51 (9 self)
 Add to MetaCart
We consider the multipoint equal time height fluctuations of a onedimensional polynuclear growth model in a half space. For special values of the nucleation rate at the origin, the multilayer version of the model is reduced to a determinantal process, for which the asymptotics can be analyzed. In the scaling limit, the fluctuations near the origin are shown to be equivalent to those of the largest eigenvalue of the orthogonal/symplectic to unitary transition ensemble at soft edge in random matrix theory.
A determinantal formula for the GOE TracyWidom distribution
 J. Phys. A
"... Investigating the long time asymptotics of the totally asymmetric simple exclusion process, Sasamoto obtains rather indirectly a formula for the GOE TracyWidom distribution. We establish that his novel formula indeed agrees with more standard expressions. 1 ..."
Abstract

Cited by 35 (13 self)
 Add to MetaCart
(Show Context)
Investigating the long time asymptotics of the totally asymmetric simple exclusion process, Sasamoto obtains rather indirectly a formula for the GOE TracyWidom distribution. We establish that his novel formula indeed agrees with more standard expressions. 1
Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process
"... We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial ..."
Abstract

Cited by 31 (16 self)
 Add to MetaCart
(Show Context)
We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial conditions where particles occupy d�, d ≥ 2. In the proper large time scaling limit, the fluctuations of particle positions are described by the Airy1 process. Interpreted as a growth model, this confirms universality of fluctuations with flat initial conditions for a discrete set of slopes. 1
Noncolliding Brownian motion and determinantal processes
 J. STAT. PHYS
, 2007
"... A system of onedimensional Brownian motions (BMs) conditioned never to collide with each other is realized as (i) Dyson’s BM model, which is a process of eigenvalues of hermitian matrixvalued diffusion process in the Gaussian unitary ensemble (GUE), and as (ii) the htransform of absorbing BM in a ..."
Abstract

Cited by 29 (14 self)
 Add to MetaCart
(Show Context)
A system of onedimensional Brownian motions (BMs) conditioned never to collide with each other is realized as (i) Dyson’s BM model, which is a process of eigenvalues of hermitian matrixvalued diffusion process in the Gaussian unitary ensemble (GUE), and as (ii) the htransform of absorbing BM in a Weyl chamber, where the harmonic function h is the product of differences of variables (the Vandermonde determinant). The KarlinMcGregor formula gives determinantal expression to the transition probability density of absorbing BM. We show from the KarlinMcGregor formula, if the initial state is in the eigenvalue distribution of GUE, the noncolliding BM is a determinantal process, in the sense that any multitime correlation function is given by a determinant specified by a matrixkernel. By taking appropriate scaling limits, spatially homogeneous and inhomogeneous infinite determinantal processes are derived. We note that the determinantal processes related with noncolliding particle systems have a feature in common such that the matrixkernels are expressed using spectral projections of appropriate effective Hamiltonians. On the common structure of matrixkernels, continuity of processes in time is proved and general property of the determinantal processes is discussed.
All orders asymptotic expansion of large partitions
, 2008
"... The generating function which counts partitions with the Plancherel measure (and its qdeformed version), can be rewritten as a matrix integral, which allows to compute its asymptotic expansion to all orders. There are applications in statistical physics of growing/melting crystals, T.A.S.E.P., and ..."
Abstract

Cited by 28 (6 self)
 Add to MetaCart
(Show Context)
The generating function which counts partitions with the Plancherel measure (and its qdeformed version), can be rewritten as a matrix integral, which allows to compute its asymptotic expansion to all orders. There are applications in statistical physics of growing/melting crystals, T.A.S.E.P., and also in algebraic geometry. In particular we compute the GromovWitten invariants of the Xp = O(p − 2) ⊕ O(−p) → P1 CalabiYau 3fold, and we prove a conjecture of M. Mariño, that the generating functions Fg of Gromov–Witten invariants of Xp, come from a matrix model, and are the symplectic invariants of the mirror spectral curve.