Results 1 - 10
of
82
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone space-bounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract
-
Cited by 2825 (11 self)
- Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone space-bounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple notion of monotone reducibility and exhibit complete problems. This provides a framework for stating existing results and asking new questions. We show that mNL (monotone nondeterministic log-space) is not closed under complementation, in contrast to Immerman's and Szelepcs 'enyi's nonmonotone result [Imm88, Sze87] that NL = co-NL; this is a simple extension of the monotone circuit depth lower bound of Karchmer and Wigderson [KW90] for st-connectivity. We also consider mBWBP (monotone bounded width branching programs) and study the question of whether mBWBP is properly contained in mNC 1 , motivated by Barrington's result [Bar89] that BWBP = NC 1 . Although we cannot answer t...
Multiparty Communication Complexity
, 1989
"... A given Boolean function has its input distributed among many parties. The aim is to determine which parties to tMk to and what information to exchange with each of them in order to evaluate the function while minimizing the total communication. This paper shows that it is possible to obtain the Boo ..."
Abstract
-
Cited by 760 (22 self)
- Add to MetaCart
(Show Context)
A given Boolean function has its input distributed among many parties. The aim is to determine which parties to tMk to and what information to exchange with each of them in order to evaluate the function while minimizing the total communication. This paper shows that it is possible to obtain the Boolean answer deterministically with only a polynomial increase in communication with respect to the information lower bound given by the nondeterministic communication complexity of the function.
On the Power of Small-Depth Threshold Circuits
, 1990
"... We investigate the power of threshold circuits of small depth. In particular we give functions which require exponential size unweigted thresh-old circuits of depth 3 when we restrict the bot-tom fanin. We also prove that there are mone tone functions fk which can be computed in depth k and linear s ..."
Abstract
-
Cited by 120 (2 self)
- Add to MetaCart
(Show Context)
We investigate the power of threshold circuits of small depth. In particular we give functions which require exponential size unweigted thresh-old circuits of depth 3 when we restrict the bot-tom fanin. We also prove that there are mone tone functions fk which can be computed in depth k and linear size A, V-circuits but require exponential size to compute by a depth k- 1 monotone weighted threshold circuit.
Private vs. common random bits in communication complexity.
- Information Processing Letters,
, 1991
"... ..."
(Show Context)
Lower Bounds for Cutting Planes Proofs with Small Coefficients
, 1995
"... We consider small-weight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the cl ..."
Abstract
-
Cited by 76 (16 self)
- Add to MetaCart
We consider small-weight Cutting Planes (CP ) proofs; that is, Cutting Planes (CP ) proofs with coefficients up to P oly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of smallweight CP , our method also gives a new and simpler exponential lower bound for Resolution. We also prove the following two theorems : (1) Tree-like CP proofs cannot polynomially simulate non-tree-like CP proofs. (2) Tree-like CP proofs and Bounded-depth-Frege proofs cannot polynomially simulate each other. Our proofs also work for some generalizations of the CP proof system. In particular, they work for CP with a deduction rule, and also for proof systems that allow any formula with small communication complexity, and any set of sound rules of inference. 1 Introduction One of the most fundamental questions in pro...
The History and Status of the P versus NP Question
, 1992
"... this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the re ..."
Abstract
-
Cited by 59 (1 self)
- Add to MetaCart
this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the realization that certain problems are algorithmically unsolvable. At around this time, forerunners of the programmable computing machine were beginning to appear. As mathematicians contemplated the practical capabilities and limitations of such devices, computational complexity theory emerged from the theory of algorithmic unsolvability. Early on, a particular type of computational task became evident, where one is seeking an object which lies
Unprovability of Lower Bounds on the Circuit Size in Certain Fragments of Bounded Arithmetic
- IN IZVESTIYA OF THE RUSSIAN ACADEMY OF SCIENCE, MATHEMATICS
, 1995
"... We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators secure against the attack by smal ..."
Abstract
-
Cited by 57 (6 self)
- Add to MetaCart
(Show Context)
We show that if strong pseudorandom generators exist then the statement “α encodes a circuit of size n (log ∗ n) for SATISFIABILITY ” is not refutable in S2 2 (α). For refutation in S1 2 (α), this is proven under the weaker assumption of the existence of generators secure against the attack by small depth circuits, and for another system which is strong enough to prove exponential lower bounds for constant-depth circuits, this is shown without using any unproven hardness assumptions. These results can be also viewed as direct corollaries of interpolation-like theorems for certain “split versions” of classical systems of Bounded Arithmetic introduced in this paper.
Separation of the Monotone NC Hierarchy
, 1999
"... We prove tight lower bounds, of up to n ffl , for the monotone depth of functions in monotone-P. As a result we achieve the separation of the following classes. 1. monotone-NC 6= monotone-P. 2. For every i 1, monotone-NC i 6= monotone-NC i+1 . 3. More generally: For any integer function D( ..."
Abstract
-
Cited by 46 (0 self)
- Add to MetaCart
We prove tight lower bounds, of up to n ffl , for the monotone depth of functions in monotone-P. As a result we achieve the separation of the following classes. 1. monotone-NC 6= monotone-P. 2. For every i 1, monotone-NC i 6= monotone-NC i+1 . 3. More generally: For any integer function D(n), up to n ffl (for some ffl ? 0), we give an explicit example of a monotone Boolean function, that can be computed by polynomial size monotone Boolean circuits of depth D(n), but that cannot be computed by any (fan-in 2) monotone Boolean circuits of depth less than Const \Delta D(n) (for some constant Const). Only a separation of monotone-NC 1 from monotone-NC 2 was previously known. Our argument is more general: we define a new class of communication complexity search problems, referred to below as DART games, and we prove a tight lower bound for the communication complexity of every member of this class. As a result we get lower bounds for the monotone depth of many functions. In...
Superpolynomial lower bounds for monotone span programs
, 1996
"... In this paper we obtain the first superpolynomial lower bounds for monotone span programs computing explicit functions. The best previous lower bound was Ω(n 5/2) by Beimel, Gál, Paterson [BGP]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are ba ..."
Abstract
-
Cited by 46 (7 self)
- Add to MetaCart
(Show Context)
In this paper we obtain the first superpolynomial lower bounds for monotone span programs computing explicit functions. The best previous lower bound was Ω(n 5/2) by Beimel, Gál, Paterson [BGP]; our proof exploits a general combinatorial lower bound criterion from that paper. Our lower bounds are based on an analysis of Paley-type bipartite graphs via Weil’s character sum estimates. We prove an n Ω(log n / log log n) lower bound for the size of monotone span programs for the clique problem. Our results give the first superpolynomial lower bounds for linear secret sharing schemes. We demonstrate the surprising power of monotone span programs by exhibiting a function computable in this model in linear size while requiring superpolynomial size monotone circuits and exponential size monotone formulae. We also show that the perfect matching function can be computed by polynomial size (non-monotone) span programs over arbitrary fields.