Results 1 
4 of
4
INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION
, 1995
"... Research on using interior point algorithms to solve combinatorial optimization and integer programming problems is surveyed. This paper discusses branch and cut methods for integer programming problems, a potential reduction method based on transforming an integer programming problem to an equivale ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
(Show Context)
Research on using interior point algorithms to solve combinatorial optimization and integer programming problems is surveyed. This paper discusses branch and cut methods for integer programming problems, a potential reduction method based on transforming an integer programming problem to an equivalent nonconvex quadratic programming problem, interior point methods for solving network flow problems, and methods for solving multicommodity flow problems, including an interior point column generation algorithm.
A Level3 ReformulationLinearization Technique Based Bound for the Quadratic Assignment Problem
"... We apply the level3 Reformulation Linearization Technique (RLT3) to the Quadratic Assignment Problem (QAP). We then present our experience in calculating lower bounds using an essentially new algorithm, based on this RLT3 formulation. This algorithm is not guaranteed to calculate the RLT3 lower bou ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
We apply the level3 Reformulation Linearization Technique (RLT3) to the Quadratic Assignment Problem (QAP). We then present our experience in calculating lower bounds using an essentially new algorithm, based on this RLT3 formulation. This algorithm is not guaranteed to calculate the RLT3 lower bound exactly, but approximates it very closely and reaches it in some instances. For Nugent problem instances up to size 24, our RLT3based lower bound calculation solves these problem instances exactly or serves to verify the optimal value. Calculating lower bounds for problems sizes larger than size 25 still presents a challenge due to the large memory needed to implement the RLT3 formulation. Our presentation emphasizes the steps taken to significantly conserve memory by using the numerous problem symmetries in the RLT3 formulation of the QAP.
Graph Modeling for Quadratic Assignment Problem Associated with the Hypercube
, 2007
"... Abstract. In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at le ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
Abstract. In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associated hypercube allow us to obtain partial information regarding the optimal solutions and thus shrink the search space and improve all the existing QAP solvers for the underlying QAPs. Secondly, we use graph modeling technique to derive a new integer linear program (ILP) models for the underlying QAPs. The new ILP model has n(n − 1) binary variables and O(n 3 log(n)) linear constraints. This yields the smallest known number of binary variables for the ILP reformulation of QAPs. Various relaxations of the new ILP model are obtained based on the graphical characterization of the hypercube, and the lower bounds provided by the LP relaxations of the new model are analyzed and compared with what provided by several classical LP relaxations of QAPs in the literature.