Results 1  10
of
191
NonLinear Approximation of Reflectance Functions
, 1997
"... We introduce a new class of primitive functions with nonlinear parameters for representing light reflectance functions. The functions are reciprocal, energyconserving and expressive. They can capture important phenomena such as offspecular reflection, increasing reflectance and retroreflection. ..."
Abstract

Cited by 269 (10 self)
 Add to MetaCart
We introduce a new class of primitive functions with nonlinear parameters for representing light reflectance functions. The functions are reciprocal, energyconserving and expressive. They can capture important phenomena such as offspecular reflection, increasing reflectance and retroreflection. We demonstrate this by fitting sums of primitive functions to a physicallybased model and to actual measurements. The resulting representation is simple, compact and uniform. It can be applied efficiently in analytical and Monte Carlo computations. CR Categories: I.3.7 [Computer Graphics]: ThreeDimensional Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image Generation Keywords: Reflectance function, BRDF representation 1 INTRODUCTION The bidirectional reflectance distribution function (BRDF) of a material describes how light is scattered at its surface. It determines the appearance of objects in a scene, through direct illumination and global interreflection effects. Local r...
Inverse Global Illumination: Recovering Reflectance Models of Real Scenes from Photographs
, 1999
"... In this paper we present a method for recovering the reflectance properties of all surfaces in a real scene from a sparse set of photographs, taking into account both direct and indirect illumination. The result is a lightingindependent model of the scene's geometry and reflectance properties, ..."
Abstract

Cited by 246 (12 self)
 Add to MetaCart
(Show Context)
In this paper we present a method for recovering the reflectance properties of all surfaces in a real scene from a sparse set of photographs, taking into account both direct and indirect illumination. The result is a lightingindependent model of the scene's geometry and reflectance properties, which can be rendered with arbitrary modifications to structure and lighting via traditional rendering methods. Our technique models reflectance with a lowparameter reflectance model, and allows diffuse albedo to vary arbitrarily over surfaces while assuming that nondiffuse characteristics remain constant across particular regions. The method's input is a geometric model of the scene and a set of calibrated high dynamic range photographs taken with known direct illumination. The algorithm hierarchically partitions the scene into a polygonal mesh, and uses imagebased rendering to construct estimates of both the radiance and irradiance of each patch from the photographic data. The algorithm computes the expected location of specular highlights, and then analyzes the highlight areas in the images by running a novel iterative optimization procedure to recover the diffuse and specular reflectance parameters for each region. Lastly, these parameters are used in constructing highresolution diffuse albedo maps for each surface.
Reflection from Layered Surfaces due to Subsurface Scattering
, 1993
"... The reflection of light from most materials consists of two major terms: the specular and the diffuse. Specular reflection may be modeled from first principles by considering a rough surface consisting of perfect reflectors, or microfacets. Diffuse reflection is generally considered to result from ..."
Abstract

Cited by 230 (3 self)
 Add to MetaCart
The reflection of light from most materials consists of two major terms: the specular and the diffuse. Specular reflection may be modeled from first principles by considering a rough surface consisting of perfect reflectors, or microfacets. Diffuse reflection is generally considered to result from multiple scattering either from a rough surface or from within a layer near the surface. Accounting for diffuse reflection by Lambert's Cosine Law, as is universally done in computer graphics, is not a physical theory based on first principles. This paper presents
A DataDriven Reflectance Model
 ACM TRANSACTIONS ON GRAPHICS
, 2003
"... We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space o ..."
Abstract

Cited by 210 (7 self)
 Add to MetaCart
We present a generative model for isotropic bidirectional reflectance distribution functions (BRDFs) based on acquired reflectance data. Instead of using analytical reflectance models, we represent each BRDF as a dense set of measurements. This allows us to interpolate and extrapolate in the space of acquired BRDFs to create new BRDFs. We treat each acquired BRDF as a single highdimensional vector taken from a space of all possible BRDFs. We apply both linear (subspace) and nonlinear (manifold) dimensionality reduction tools in an effort to discover a lowerdimensional representation that characterizes our measurements. We let users define perceptually meaningful parametrization directions to navigate in the reduceddimension BRDF space. On the lowdimensional manifold, movement along these directions produces novel but valid BRDFs.
Predicting reflectance functions from complex surfaces
, 1992
"... This thesis describes a physicallybased Monte Carlo technique for approximating bidirectional reflectance distribution functions (BRDFs) for a large class of geometries by directly simulating geometric optical scattering from surfaces. The method is more general than previous analytical models: it ..."
Abstract

Cited by 174 (6 self)
 Add to MetaCart
This thesis describes a physicallybased Monte Carlo technique for approximating bidirectional reflectance distribution functions (BRDFs) for a large class of geometries by directly simulating geometric optical scattering from surfaces. The method is more general than previous analytical models: it removes most restrictions on surface microgeometry. Three main points are described: a new representation of the BRDF, a Monte Carlo technique to estimate the coefficients of the representation, and the means of creating a milliscale BRDF from microscale scattering events. The combination of these techniques allows the prediction of scattering from essentially arbitrary roughness geometries. The BRDF is concisely represented by a matrix of spherical harmonic coefficients; the matrix is directly estimated from a geometric optics simulation, enforcing exact reciprocity. Microscale scattering events are represented by direct simulation (e.g., specular reflection and transmission by individual textile fibers) or by a microscaleaveraged model (e.g., a waveopticsbased statistical BRDF) depend
ImageBased BRDF Measurement Including Human Skin
"... We present a new imagebased process for measuring the bidirectional reflectance of homogeneous surfaces rapidly, completely, and accurately. For simple sample shapes (spheres and cylinders) the method requires only a digital camera and a stable light source. Adding a 3D scanner allows a wide cla ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
We present a new imagebased process for measuring the bidirectional reflectance of homogeneous surfaces rapidly, completely, and accurately. For simple sample shapes (spheres and cylinders) the method requires only a digital camera and a stable light source. Adding a 3D scanner allows a wide class of curved nearconvex objects to be measured. With measurements for a variety of materials from paints to human skin, we demonstrate the new method's ability to achieve high resolution and accuracy over a large domain of illumination and reflection directions. We verify our measurements by tests of internal consistency and by comparison against measurements made using a gonioreflectometer.
Interactive Rendering with Arbitrary BRDFs using Separable Approximations
 IN EUROGRAPHICS RENDERING WORKSHOP
, 1999
"... A separable decomposition of bidirectional reflectance distributions (BRDFs) is used to implement arbitrary reflectances from point sources on existing graphics hardware. Twodimensional texture mapping and compositing operations are used to reconstruct samples of the BRDF at every pixel at interact ..."
Abstract

Cited by 133 (19 self)
 Add to MetaCart
A separable decomposition of bidirectional reflectance distributions (BRDFs) is used to implement arbitrary reflectances from point sources on existing graphics hardware. Twodimensional texture mapping and compositing operations are used to reconstruct samples of the BRDF at every pixel at interactive rates. A change of variables, the GramSchmidt halfangle/difference vector parameterization, improves separability. Two decomposition algorithms are also presented. The singular value decomposition (SVD) minimizes RMS error. The normalized decomposition is fast and simple, using no more space than what is required for the final representation.
Generalization of Lambert's Reflectance Model
 In SIGGRAPH 94
, 1994
"... Lambert's model for body reflection is widely used in computer graphics. It is used extensively by rendering techniques such as radiosity and ray tracing. For several realworld objects, however, Lambert's model can prove to be a very inaccurate approximation to the body reflectance. While ..."
Abstract

Cited by 113 (2 self)
 Add to MetaCart
(Show Context)
Lambert's model for body reflection is widely used in computer graphics. It is used extensively by rendering techniques such as radiosity and ray tracing. For several realworld objects, however, Lambert's model can prove to be a very inaccurate approximation to the body reflectance. While the brightness of a Lambertian surface is independent of viewing direction, that of a rough surface increases as the viewing direction approaches the light source direction. In this paper, a comprehensive model is developed that predicts body reflectance from rough surfaces. The surface is modeled as a collection of Lambertian facets. It is shown that such a surface is inherently nonLambertian due to the foreshortening of the surface facets. Further, the model accounts for complex geometric and radiometric phenomena such as masking, shadowing, and interreflections between facets. Several experiments have been conducted on samples of rough diffuse surfaces, such as, plaster, sand, clay, and cloth. All...
Experimental analysis of BRDF models
, 2005
"... The Bidirectional Reflectance Distribution Function (BRDF) describes the appearance of a material by its interaction with light at a surface point. A variety of analytical models have been proposed to represent BRDFs. However, analysis of these models has been scarce due to the lack of highresoluti ..."
Abstract

Cited by 100 (6 self)
 Add to MetaCart
(Show Context)
The Bidirectional Reflectance Distribution Function (BRDF) describes the appearance of a material by its interaction with light at a surface point. A variety of analytical models have been proposed to represent BRDFs. However, analysis of these models has been scarce due to the lack of highresolution measured data. In this work we evaluate several wellknown analytical models in terms of their ability to fit measured BRDFs. We use an existing highresolution data set of a hundred isotropic materials and compute the best approximation for each analytical model. Furthermore, we have built a new setup for efficient acquisition of anisotropic BRDFs, which allows us to acquire anisotropic materials at high resolution. We have measured four samples of anisotropic materials (brushed aluminum, velvet, and two satins). Based on the numerical errors, function plots, and rendered images we provide insights into the performance of the various models. We conclude that for most isotropic materials physicallybased analytic reflectance models can represent their appearance quite well. We illustrate the important difference between the two common ways of defining the specular lobe: around the mirror direction and with respect to the halfvector. Our evaluation shows that the latter gives a more accurate shape for the reflection lobe. Our analysis of anisotropic materials indicates current parametric reflectance models cannot represent their appearances faithfully in many cases. We show that using a sampled microfacet distribution computed from measurements improves the fit and qualitatively reproduces the measurements.
A Microfacetbased BRDF Generator
, 2000
"... A method is presented that takes as an input a 2D microfacet orientation distribution and produces a 4D bidirectional reflectance distribution function (BRDF). This method differs from previous microfacetbased BRDF models in that it uses a simple shadowing term which allows it to handle very genera ..."
Abstract

Cited by 95 (3 self)
 Add to MetaCart
A method is presented that takes as an input a 2D microfacet orientation distribution and produces a 4D bidirectional reflectance distribution function (BRDF). This method differs from previous microfacetbased BRDF models in that it uses a simple shadowing term which allows it to handle very general microfacet distributions while maintaining reciprocity and energy conservation. The generator is shown on a variety of material types.