Results 1 - 10
of
839
Face Recognition: A Literature Survey
, 2000
"... ... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into ..."
Abstract
-
Cited by 1398 (21 self)
- Add to MetaCart
... This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition,
Recognizing Imprecisely Localized, Partially Occluded and Expression Variant Faces from a Single Sample per Class
, 2002
"... The classical way of attempting to solve the face (or object) recognition problem is by using large and representative datasets. In many applications though, only one sample per class is available to the system. In this contribution, we describe a probabilistic approach that is able to compensate fo ..."
Abstract
-
Cited by 211 (8 self)
- Add to MetaCart
The classical way of attempting to solve the face (or object) recognition problem is by using large and representative datasets. In many applications though, only one sample per class is available to the system. In this contribution, we describe a probabilistic approach that is able to compensate for imprecisely localized, partially occluded and expression variant faces even when only one single training sample per class is available to the system. To solve the localization problem, we find the subspace (within the feature space, e.g. eigenspace) that represents this error for each of the training images. To resolve the occlusion problem, each face is divided into k local regions which are analyzed in isolation. In contrast with other approaches, where a simple voting space is used, we present a probabilistic method that analyzes how "good" a local match is. To make the recognition system less sensitive to the differences between the facial expression displayed on the training and the testing images, we weight the results obtained on each local area on the bases of how much of this local area is affected by the expression displayed on the current test image.
Head Pose Estimation in Computer Vision: A Survey
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has ..."
Abstract
-
Cited by 195 (13 self)
- Add to MetaCart
The capacity to estimate the head pose of another person is a common human ability that presents a unique challenge for computer vision systems. Compared to face detection and recognition, which have been the primary foci of face-related vision research, identity-invariant head pose estimation has fewer rigorously evaluated systems or generic solutions. In this paper, we discuss the inherent difficulties in head pose estimation and present an organized survey describing the evolution of the field. Our discussion focuses on the advantages and disadvantages of each approach and spans 90 of the most innovative and characteristic papers that have been published on this topic. We compare these systems by focusing on their ability to estimate coarse and fine head pose, highlighting approaches that are well suited for unconstrained environments.
Face Detection, Pose Estimation, and Landmark Localization in the Wild
"... We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewp ..."
Abstract
-
Cited by 189 (6 self)
- Add to MetaCart
(Show Context)
We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewpoint. We show that tree-structured models are surprisingly effective at capturing global elastic deformation, while being easy to optimize unlike dense graph structures. We present extensive results on standard face benchmarks, as well as a new “in the wild ” annotated dataset, that suggests our system advances the state-of-theart, sometimes considerably, for all three tasks. Though our model is modestly trained with hundreds of faces, it compares favorably to commercial systems trained with billions of examples (such as Google Picasa and face.com). 1.
Toward an Affect-Sensitive Multimodal Human-Computer Interaction
- Proceedings of the IEEE
, 2003
"... The ability to recognize affective states of a person... This paper argues that next-generation human-computer interaction (HCI) designs need to include the essence of emotional intelligence -- the ability to recognize a user's affective states -- in order to become more human-like, more effect ..."
Abstract
-
Cited by 189 (30 self)
- Add to MetaCart
(Show Context)
The ability to recognize affective states of a person... This paper argues that next-generation human-computer interaction (HCI) designs need to include the essence of emotional intelligence -- the ability to recognize a user's affective states -- in order to become more human-like, more effective, and more efficient. Affective arousal modulates all nonverbal communicative cues (facial expressions, body movements, and vocal and physiological reactions). In a face-to-face interaction, humans detect and interpret those interactive signals of their communicator with little or no effort. Yet design and development of an automated system that accomplishes these tasks is rather difficult. This paper surveys the past work in solving these problems by a computer and provides a set of recommendations for developing the first part of an intelligent multimodal HCI -- an automatic personalized analyzer of a user's nonverbal affective feedback.
Multimodal Video Indexing: A Review of the State-of-the-art
- Multimedia Tools and Applications
, 2003
"... Efficient and effective handling of video documents depends on the availability of indexes. Manual indexing is unfeasible for large video collections. In this paper we survey several methods aiming at automating this time and resource consuming process. Good reviews on single modality based video in ..."
Abstract
-
Cited by 173 (19 self)
- Add to MetaCart
Efficient and effective handling of video documents depends on the availability of indexes. Manual indexing is unfeasible for large video collections. In this paper we survey several methods aiming at automating this time and resource consuming process. Good reviews on single modality based video indexing have appeared in literature. Effective indexing, however, requires a multimodal approach in which either the most appropriate modality is selected or the different modalities are used in collaborative fashion. Therefore, instead of separately treating the different information sources involved, and their specific algorithms, we focus on the similarities and differences between the modalities. To that end we put forward a unifying and multimodal framework, which views a video document from the perspective of its author. This framework forms the guiding principle for identifying index types, for which automatic methods are found in literature. It furthermore forms the basis for categorizing these different methods.
Fast Rotation Invariant Multi-View Face Detection Based
- on Real AdaBoost,” Proc. Sixth Int’l Conf. Automatic Face and Gesture Recognition
, 2004
"... Abstract—Rotation invariant multiview face detection (MVFD) aims to detect faces with arbitrary rotation-in-plane (RIP) and rotationoff-plane (ROP) angles in still images or video sequences. MVFD is crucial as the first step in automatic face processing for general applications since face images are ..."
Abstract
-
Cited by 153 (18 self)
- Add to MetaCart
(Show Context)
Abstract—Rotation invariant multiview face detection (MVFD) aims to detect faces with arbitrary rotation-in-plane (RIP) and rotationoff-plane (ROP) angles in still images or video sequences. MVFD is crucial as the first step in automatic face processing for general applications since face images are seldom upright and frontal unless they are taken cooperatively. In this paper, we propose a series of innovative methods to construct a high-performance rotation invariant multiview face detector, including the Width-First-Search (WFS) tree detector structure, the Vector Boosting algorithm for learning vector-output strong classifiers, the domain-partition-based weak learning method, the sparse feature in granular space, and the heuristic search for sparse feature selection. As a result of that, our multiview face detector achieves low computational complexity, broad detection scope, and high detection accuracy on both standard testing sets and real-life images. Index Terms—Pattern classification, AdaBoost, vector boosting, granular feature, rotation invariant, face detection. Ç 1
Social Signal Processing: Survey of an Emerging Domain
, 2008
"... The ability to understand and manage social signals of a person we are communicating with is the core of social intelligence. Social intelligence is a facet of human intelligence that has been argued to be indispensable and perhaps the most important for success in life. This paper argues that next- ..."
Abstract
-
Cited by 153 (32 self)
- Add to MetaCart
The ability to understand and manage social signals of a person we are communicating with is the core of social intelligence. Social intelligence is a facet of human intelligence that has been argued to be indispensable and perhaps the most important for success in life. This paper argues that next-generation computing needs to include the essence of social intelligence – the ability to recognize human social signals and social behaviours like turn taking, politeness, and disagreement – in order to become more effective and more efficient. Although each one of us understands the importance of social signals in everyday life situations, and in spite of recent advances in machine analysis of relevant behavioural cues like blinks, smiles, crossed arms, laughter, and similar, design and development of automated systems for Social Signal Processing (SSP) are rather difficult. This paper surveys the past efforts in solving these problems by a computer, it summarizes the relevant findings in social psychology, and it proposes a set of recommendations for enabling the development of the next generation of socially-aware computing.
Human Computing and Machine Understanding of Human Behavior: A Survey
- SURVEY, PROC. ACM INT’L CONF. MULTIMODAL INTERFACES
, 2006
"... A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should b ..."
Abstract
-
Cited by 132 (33 self)
- Add to MetaCart
A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior.