Results 1 - 10
of
165
The price of stability for network design with fair cost allocation
- In Proceedings of the 45th Annual Symposium on Foundations of Computer Science (FOCS
, 2004
"... Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of self-interested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite differ ..."
Abstract
-
Cited by 281 (30 self)
- Add to MetaCart
(Show Context)
Abstract. Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of self-interested agents who want to form a network connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite different from the centrally enforced optimum. We study the quality of the best Nash equilibrium, and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash equilibrium solution has a natural meaning of stability in this context — it is the optimal solution that can be proposed from which no user will defect. We consider the price of stability for network design with respect to one of the most widely-studied protocols for network cost allocation, in which the cost of each edge is divided equally between users whose connections make use of it; this fair-division scheme can be derived from the Shapley value, and has a number of basic economic motivations. We show that the price of stability for network design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a good Nash equilibrium can be achieved via best-response dynamics in which users iteratively defect from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful mechanism for inducing strategic behavior to form near-optimal equilibria. We discuss connections to the class of potential games defined by Monderer and Shapley, and extend our results to cases in which users are seeking to balance network design costs with latencies in the constructed network, with stronger results when the network has only delays and no construction costs. We also present bounds on the convergence time of best-response dynamics, and discuss extensions to a weighted game.
Selfish Routing and the Price of Anarchy
- MATHEMATICAL PROGRAMMING SOCIETY NEWSLETTER
, 2007
"... Selfish routing is a classical mathematical model of how self-interested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this in ..."
Abstract
-
Cited by 255 (11 self)
- Add to MetaCart
(Show Context)
Selfish routing is a classical mathematical model of how self-interested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worst-possible severity of a phenomenon called Braess’s Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author’s PhD thesis, but also discusses several more recent results in the area.
Near-optimal network design with selfish agents
, 2003
"... We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possi ..."
Abstract
-
Cited by 151 (19 self)
- Add to MetaCart
We introduce a simple network design game that models how independent selfish agents can build or maintain a large network. In our game every agent has a specific connectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which his terminals are connected. Possible edges in the network have costs and each agent’s goal is to pay as little as possible. Determining whether or not a Nash equilibrium exists in this game is NP-complete. However, when the goal of each player is to connect a terminal to a common source, we prove that there is a Nash equilibrium as cheap as the optimal network, and give a polynomial time algorithmtofinda(1+ε)-approximate Nash equilibrium that does not cost much more. For the general connection game we prove that there is a 3-approximate Nash equilibrium that is as cheap as the optimal network, and give an algorithm to find a (4.65 +ε)-approximate Nash equilibrium that does not cost much more.
The price of routing unsplittable flow
- In Proc. 37th Symp. Theory of Computing (STOC
, 2005
"... The essence of the routing problem in real networks is that the traffic demand from a source to destination must be satisfied by choosing a single path between source and destination. The splittable version of this problem is when demand can be satisfied by many paths, namely a flow from source to d ..."
Abstract
-
Cited by 140 (3 self)
- Add to MetaCart
(Show Context)
The essence of the routing problem in real networks is that the traffic demand from a source to destination must be satisfied by choosing a single path between source and destination. The splittable version of this problem is when demand can be satisfied by many paths, namely a flow from source to destination. The unsplittable, or discrete version of the problem is more realistic yet is more complex from the algorithmic point of view; in some settings optimizing such unsplittable traffic flow is computationally intractable. In this paper, we assume this more realistic unsplittable model, and investigate the ”price of anarchy”, or deterioration of network performance measured in total traffic latency under the selfish user behavior. We show that for linear edge latency functions the price of anarchy is exactly 2.618 for weighted demand and exactly 2.5 for unweighted demand. These results are easily extended to (weighted or unweighted) atomic ”congestion games”, where paths are replaced by general subsets. We also show that for polynomials of degree d edge latency functions the price of anarchy is dΘ(d). Our results hold also for mixed strategies. Previous results of Roughgarden and Tardos showed that for linear edge latency functions the price of anarchy is exactly 4 3 under the assumption that each user controls only a negligible fraction of the overall traffic (this result also holds for the splittable case). Note that under the assumption of negligible traffic pure and mixed strategies are equivalent and also splittable and unsplittable models are equivalent. 1
Intrinsic Robustness of the Price of Anarchy
- STOC'09
, 2009
"... The price of anarchy (POA) is a worst-case measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium ..."
Abstract
-
Cited by 101 (12 self)
- Add to MetaCart
(Show Context)
The price of anarchy (POA) is a worst-case measure of the inefficiency of selfish behavior, defined as the ratio of the objective function value of a worst Nash equilibrium of a game and that of an optimal outcome. This measure implicitly assumes that players successfully reach some Nash equilibrium. This drawback motivates the search for inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash and correlated equilibria; or to sequences of outcomes generated by natural experimentation strategies, such as successive best responses or simultaneous regret-minimization. We prove a general and fundamental connection between the price of anarchy and its seemingly stronger relatives in classes of games with a sum objective. First, we identify a “canonical sufficient condition ” for an upper bound of the POA for pure Nash equilibria, which we call a smoothness argument. Second, we show that every bound derived via a smoothness argument extends automatically, with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of regret-minimizing players (or “price of total anarchy”). Smoothness arguments also have automatic implications for the inefficiency of approximate and Bayesian-Nash equilibria and, under mild additional assumptions, for bicriteria bounds and for polynomial-length best-response sequences. We also identify classes of games — most notably, congestion games with cost functions restricted to an arbitrary fixed set — that are tight, in the sense that smoothness arguments are guaranteed to produce an optimal worst-case upper bound on the POA, even for the smallest set of interest (pure Nash equilibria). Byproducts of our proof of this result include the first tight bounds on the POA in congestion games with non-polynomial cost functions, and the first
Selfish Traffic Allocation for Server Farms
, 2003
"... We study the price of selfish routing in non-cooperative networks like the Internet. In particular, we investigate the price... ..."
Abstract
-
Cited by 76 (5 self)
- Add to MetaCart
We study the price of selfish routing in non-cooperative networks like the Internet. In particular, we investigate the price...
Convergence to Approximate Nash Equilibria in Congestion Games
- In SODA ’07
, 2007
"... ..."
(Show Context)
Selfish Load Balancing and Atomic Congestion Games
, 2007
"... We revisit a classical load balancing problem in the modern context of decentralized systems and self-interested clients. In particular, there is a set of clients, each of whom must choose a server from a permissible set. Each client has a unit-length job and selfishly wants to minimize its own late ..."
Abstract
-
Cited by 72 (3 self)
- Add to MetaCart
(Show Context)
We revisit a classical load balancing problem in the modern context of decentralized systems and self-interested clients. In particular, there is a set of clients, each of whom must choose a server from a permissible set. Each client has a unit-length job and selfishly wants to minimize its own latency (job completion time). A server’s latency is inversely proportional to its speed, but it grows linearly with (or, more generally, as the pth power of) the number of clients matched to it. This interaction is naturally modeled as an atomic congestion game, which we call selfish load balancing. We analyze the Nash equilibria of this game and prove nearly tight bounds on the price of anarchy (worst-case ratio between a Nash solution and the social optimum). In particular, for linear latency functions, we show that if the server speeds are relatively bounded and the number of clients is large compared with the number of servers, then every Nash assignment approaches social optimum. Without any assumptions on the number of clients, servers, and server speeds, the price of anarchy is at most 2.5. If all servers have the same speed, then the price of anarchy further improves to 1 + 2 / √ 3 ≈ 2.15. We also exhibit a lower bound of 2.01. Our proof techniques can also be adapted for the coordinated load balancing problem under L2 norm, where it slightly improves the best previously known upper bound on the competitive ratio of a simple greedy scheme.
On the price of anarchy and stability of correlated equilibria of linear congestion games
, 2005
"... ..."
Regret minimization and the price of total anarchy
, 2008
"... We propose weakening the assumption made when studying the price of anarchy: Rather than assume that self-interested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret ..."
Abstract
-
Cited by 59 (10 self)
- Add to MetaCart
(Show Context)
We propose weakening the assumption made when studying the price of anarchy: Rather than assume that self-interested players will play according to a Nash equilibrium (which may even be computationally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret minimization can be done via simple, efficient algorithms even in many settings where the number of action choices for each player is exponential in the natural parameters of the problem. We prove that despite our weakened assumptions, in several broad classes of games, this “price of total anarchy” matches the Nash price of anarchy, even though play may never converge to Nash equilibrium. In contrast to the price of anarchy and the recently introduced price of sinking [15], which require all players to behave in a prescribed manner, we show that the price of total anarchy is in many cases resilient to the presence of Byzantine players, about whom we make no assumptions. Finally, because the price of total anarchy is an upper bound on the price of anarchy even in mixed strategies, for some games our results yield as corollaries previously unknown bounds on the price of anarchy in mixed strategies.