Results 1 -
2 of
2
Real-time fMRI-brain computer interfaces for rehabilitation of Parkinson’s disease patients.
, 2012
"... a b s t r a c t With the advent of brain computer interfaces based on real-time fMRI (rtfMRI-BCI), the possibility of performing neurofeedback based on brain hemodynamics has become a reality. In the early stage of the development of this field, studies have focused on the volitional control of act ..."
Abstract
-
Cited by 7 (2 self)
- Add to MetaCart
(Show Context)
a b s t r a c t With the advent of brain computer interfaces based on real-time fMRI (rtfMRI-BCI), the possibility of performing neurofeedback based on brain hemodynamics has become a reality. In the early stage of the development of this field, studies have focused on the volitional control of activity in circumscribed brain regions. However, based on the understanding that the brain functions by coordinated activity of spatially distributed regions, there have recently been further developments to incorporate real-time feedback of functional connectivity and spatio-temporal patterns of brain activity. The present article reviews the principles of rtfMRI neurofeedback, its applications, benefits and limitations. A special emphasis is given to the discussion of novel developments that have enabled the use of this methodology to achieve selfregulation of the functional connectivity between different brain areas and of distributed brain networks, anticipating new and exciting applications for cognitive neuroscience and for the potential alleviation of neuropsychiatric disorders.
Quantifying the effect of intertrial dependence on perceptual decisions
"... In the perceptual sciences, experimenters study the causal mechanisms of perceptual systems by probing observers with carefully constructed stimuli. It has long been known, however, that perceptual decisions are not only determined by the stimulus, but also by internal factors. Internal factors coul ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
(Show Context)
In the perceptual sciences, experimenters study the causal mechanisms of perceptual systems by probing observers with carefully constructed stimuli. It has long been known, however, that perceptual decisions are not only determined by the stimulus, but also by internal factors. Internal factors could lead to a statistical influence of previous stimuli and responses on the current trial, resulting in serial dependencies, which complicate the causal inference between stimulus and response. However, the majority of studies do not take serial dependencies into account, and it has been unclear how strongly they influence perceptual decisions. We hypothesize that one reason for this neglect is that there has been no reliable tool to quantify them and to correct for their effects. Here we develop a statistical method to detect, estimate, and correct for serial dependencies in behavioral data. We show that even trained psychophysical observers suffer from strong history dependence. A substantial fraction of the decision variance on difficult stimuli was independent of the stimulus but dependent on experimental history. We discuss the strong dependence of perceptual decisions on internal factors and its implications for correct data interpretation.