Results 1 - 10
of
230
Collective classification in network data
, 2008
"... Numerous real-world applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification te ..."
Abstract
-
Cited by 178 (32 self)
- Add to MetaCart
(Show Context)
Numerous real-world applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification techniques to classify nodes in such data. In this report, we attempt to provide a brief introduction to this area of research and how it has progressed during the past decade. We introduce four of the most widely used inference algorithms for classifying networked data and empirically compare them on both synthetic and real-world data.
Maximum margin planning
- IN PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING (ICML’06
, 2006
"... Imitation learning of sequential, goaldirected behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in ..."
Abstract
-
Cited by 145 (28 self)
- Add to MetaCart
(Show Context)
Imitation learning of sequential, goaldirected behavior by standard supervised techniques is often difficult. We frame learning such behaviors as a maximum margin structured prediction problem over a space of policies. In this approach, we learn mappings from features to cost so an optimal policy in an MDP with these cost mimics the expert’s behavior. Further, we demonstrate a simple, provably efficient approach to structured maximum margin learning, based on the subgradient method, that leverages existing fast algorithms for inference. Although the technique is general, it is particularly relevant in problems where A * and dynamic programming approaches make learning policies tractable in problems beyond the limitations of a QP formulation. We demonstrate our approach applied to route planning for outdoor mobile robots, where the behavior a designer wishes a planner to execute is often clear, while specifying cost functions that engender this behavior is a much more difficult task.
Online Large-Margin Training of Syntactic and Structural Translation Features
"... Minimum-error-rate training (MERT) is a bottleneck for current development in statistical machine translation because it is limited in the number of weights it can reliably optimize. Building on the work of Watanabe et al., we explore the use of the MIRA algorithm of Crammer et al. as an alternative ..."
Abstract
-
Cited by 124 (12 self)
- Add to MetaCart
Minimum-error-rate training (MERT) is a bottleneck for current development in statistical machine translation because it is limited in the number of weights it can reliably optimize. Building on the work of Watanabe et al., we explore the use of the MIRA algorithm of Crammer et al. as an alternative to MERT. We first show that by parallel processing and exploiting more of the parse forest, we can obtain results using MIRA that match or surpass MERT in terms of both translation quality and computational cost. We then test the method on two classes of features that address deficiencies in the Hiero hierarchical phrasebased model: first, we simultaneously train a large number of Marton and Resnik’s soft syntactic constraints, and, second, we introduce a novel structural distortion model. In both cases we obtain significant improvements in translation performance. Optimizing them in combination, for a total of 56 feature weights, we improve performance by 2.6 Bleu on a subset of the NIST 2006 Arabic-English evaluation data.
Learning CRFs using Graph Cuts
"... Abstract. Many computer vision problems are naturally formulated as random fields, specifically MRFs or CRFs. The introduction of graph cuts has enabled efficient and optimal inference in associative random fields, greatly advancing applications such as segmentation, stereo reconstruction and many o ..."
Abstract
-
Cited by 104 (8 self)
- Add to MetaCart
(Show Context)
Abstract. Many computer vision problems are naturally formulated as random fields, specifically MRFs or CRFs. The introduction of graph cuts has enabled efficient and optimal inference in associative random fields, greatly advancing applications such as segmentation, stereo reconstruction and many others. However, while fast inference is now widespread, parameter learning in random fields has remained an intractable problem. This paper shows how to apply fast inference algorithms, in particular graph cuts, to learn parameters of random fields with similar efficiency. We find optimal parameter values under standard regularized objective functions that ensure good generalization. Our algorithm enables learning of many parameters in reasonable time, and we explore further speedup techniques. We also discuss extensions to non-associative and multi-class problems. We evaluate the method on image segmentation and geometry recognition. 1
A discriminative matching approach to word alignment
- In Proceedings of HLT-EMNLP
, 2005
"... We present a discriminative, largemargin approach to feature-based matching for word alignment. In this framework, pairs of word tokens receive a matching score, which is based on features of that pair, including measures of association between the words, distortion between their positions, similari ..."
Abstract
-
Cited by 98 (7 self)
- Add to MetaCart
We present a discriminative, largemargin approach to feature-based matching for word alignment. In this framework, pairs of word tokens receive a matching score, which is based on features of that pair, including measures of association between the words, distortion between their positions, similarity of the orthographic form, and so on. Even with only 100 labeled training examples and simple features which incorporate counts from a large unlabeled corpus, we achieve AER performance close to IBM Model 4, in much less time. Including Model 4 predictions as features, we achieve a relative AER reduction of 22 % in over intersected Model 4 alignments. 1
C.: Structured Forests for Fast Edge Detection
"... Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image pa ..."
Abstract
-
Cited by 66 (1 self)
- Add to MetaCart
(Show Context)
Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image patches to learn both an accurate and computation-ally efficient edge detector. We formulate the problem of predicting local edge masks in a structured learning frame-work applied to random decision forests. Our novel ap-proach to learning decision trees robustly maps the struc-tured labels to a discrete space on which standard infor-mation gain measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many competing state-of-the-art approaches, while also achieving state-of-the-art edge de-tection results on the BSDS500 Segmentation dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our learned edge models generalize well across datasets. 1.
Learning to Search: Functional Gradient Techniques for Imitation Learning
- Autonomous Robots
, 2009
"... Programming robot behavior remains a challenging task. While it is often easy to abstractly define or even demonstrate a desired behavior, designing a controller that embodies the same behavior is difficult, time consuming, and ultimately expensive. The machine learning paradigm offers the promise o ..."
Abstract
-
Cited by 60 (19 self)
- Add to MetaCart
(Show Context)
Programming robot behavior remains a challenging task. While it is often easy to abstractly define or even demonstrate a desired behavior, designing a controller that embodies the same behavior is difficult, time consuming, and ultimately expensive. The machine learning paradigm offers the promise of enabling “programming by demonstration ” for developing high-performance robotic systems. Unfortunately, many “behavioral cloning ” (Bain & Sammut, 1995; Pomerleau, 1989; LeCun et al., 2006) approaches that utilize classical tools of supervised learning (e.g. decision trees, neural networks, or support vector machines) do not fit the needs of modern robotic systems. These systems are often built atop sophisticated planning algorithms that efficiently reason far into the future; consequently, ignoring these planning algorithms in lieu of a supervised learning approach often leads to myopic and poor-quality robot performance. While planning algorithms have shown success in many real-world applications ranging from legged locomotion (Chestnutt et al., 2003) to outdoor unstructured navigation (Kelly et al., 2004; Stentz, 2009), such algorithms rely on fully specified cost functions that map sensor readings and environment models to quantifiable costs. Such cost functions are usually manually designed and programmed. Recently, a set of techniques has been developed that explore learning these functions from expert human demonstration.
Structured prediction, dual extragradient and Bregman projections
- Journal of Machine Learning Research
, 2006
"... We present a simple and scalable algorithm for maximum-margin estimation of structured output models, including an important class of Markov networks and combinatorial models. We formulate the estimation problem as a convex-concave saddle-point problem that allows us to use simple projection methods ..."
Abstract
-
Cited by 59 (2 self)
- Add to MetaCart
(Show Context)
We present a simple and scalable algorithm for maximum-margin estimation of structured output models, including an important class of Markov networks and combinatorial models. We formulate the estimation problem as a convex-concave saddle-point problem that allows us to use simple projection methods based on the dual extragradient algorithm (Nesterov, 2003). The projection step can be solved using dynamic programming or combinatorial algorithms for min-cost convex flow, depending on the structure of the problem. We show that this approach provides a memory-efficient alternative to formulations based on reductions to a quadratic program (QP). We analyze the convergence of the method and present experiments on two very different structured prediction tasks: 3D image segmentation and word alignment, illustrating the favorable scaling properties of our algorithm. 1 1.
Stochastic block-coordinate frank-wolfe optimization for structural svms. arXiv preprint:1207.4747
, 2012
"... We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full Frank-Wolfe algorithm. We also show that, w ..."
Abstract
-
Cited by 58 (6 self)
- Add to MetaCart
(Show Context)
We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this yields an online algorithm that has the same low iteration complexity as primal stochastic subgradient methods. However, unlike stochastic subgradient methods, the block-coordinate Frank-Wolfe algorithm allows us to compute the optimal step-size and yields a computable duality gap guarantee. Our experiments indicate that this simple algorithm outperforms competing structural SVM solvers. 1.